簡易檢索 / 詳目顯示

研究生: 林育勤
Lin, Yu-chin
論文名稱: 以明膠或明膠-酚醛樹脂混摻體為模板合成中孔洞材料
Synthesis of Mesoporous Silicas and Carbons Using Gelatin or Gelatin-Phenol Formaldehyde Polymer Blend as Template
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 146
中文關鍵詞: 光子晶體中孔洞材料明膠
外文關鍵詞: photonic crystals, mesoporous materials, gelatin
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含三個研究主題,第一個主題是以明膠為模板合成中孔洞氧化矽;此外也以明膠及兩種不同分子量的酚醛樹脂為有機模板合成中孔洞氧化矽材料及碳材。第二個主題是以明膠和酚醛樹脂為有機模板合成中孔洞磷酸鈣。第三個主題是製備高均勻度之中孔洞氧化矽球,此材料經離心過後具備光子晶體的行為。

    第一部份:以明膠或明膠-酚醛樹脂混摻體為模板合成中孔洞材料
    本研究為落實近年積極推動的綠色化學概念,找到一毒性最低且對環境污染程度最少的有機模板取代物—明膠。利用水解明膠仍具有胺基等可產生氫鍵的官能基,於適當條件下加入矽酸鈉合成有機無機混成材料,最後移除有機物得到氧化矽材料;此外,用高分子混摻的概念,以明膠及兩種不同分子量的酚醛樹脂(PF2180、PR620)為有機模板合成中孔洞氧化矽材及碳材也是本部份所要探討的重點。

    第二部份:以明膠和酚醛樹脂為有機模板合成中孔洞磷酸鈣
    本研究嘗試採用前面所述的明膠與兩種酚醛樹脂(PF2180、PR620)做為有機模板,磷酸鈣為無機物,以高分子混摻的概念合成明膠—酚醛樹脂—磷酸鈣複合材料。經由TEM觀察發現所製備的磷酸鈣複合材料具有特殊外型及孔洞性。此外,也嘗試在合成出複合材料後移除有機物,以製備中孔洞磷酸鈣材料。

    第三部份:高均勻度中孔洞氧化矽球之合成
    本實驗以自組合材料化學為基礎,使用有機物的四級銨鹽界面活性劑當模板( CnTMAB, n=12-18),加入矽酸鈉當無機物之來源,在接近中性的化學環境下(i.e. pH=7.0–8.5, T = 30–40℃)合成出高均勻度的中孔洞氧化矽球。因為所合成出來的氧化矽球大小均勻度高,在高速離心後氧化矽球被規則地排列堆積,可得到似蛋白石的薄片結構,並具備其光子晶體的行為。光子晶體薄片呈現的色澤會因為氧化矽球粒徑大小改變而有所不同。研究中發現,氧化矽球的粒徑大小可利用改變反應溶液的pH值或添加助溶劑〈乙醇〉來控制。此外,在應用上,可將光子晶體薄片在600℃下鍛燒後,以喃醇為碳源,拓印光子晶體結構,而得到孔洞均勻,排列整齊之大孔洞碳材。

    In this thesis, there are three major researching parts: 1. Synthesis of mesoporous silicas and carbons using gelatin or gelatin-phenol formaldehyde polymer blend as template. 2. Preparation of mesoporous calcium phosphate by using gelatin-phenol formaldehyde polymer blend as template. 3. Synthesis of uniform mesoporous silica spheres.

    Part I:Synthesis of mesoporous silicas and carbons using gelatin or gelatin-phenol formaldehyde polymer blend as template.
    Based on the concepts of green chemistry, we used new organic template gelatin, which possessed no toxicity to human health and the environment, to synthesize the mesoporous materials. Since the gelatin still possesses numerous amide groups (-CO-NH2) which can have a high affinity to strongly interact with silanol groups (Si-OH) on the silicate species via multiple hydrogen bonds. Thus, after adding sodium silicate solution as silica source, a homogeneous gelatine-silica composite was gained. Then, we will get the mesoporous silicas after removing the organic templates by calcination. In addition, a gelatin-phenol formaldehyde polymer blend, which including the carbonizable phenol formaldehyde resin, can also be used conveniently as a new template to prepare the mesoporous silicas and carbons.

    Part II:Preparation of mesoporous calcium phosphate by using gelatin-phenol formaldehyde polymer blend as template.
    In this study, a new method was proposed to prepare the mesoporous calcium phosphate composite by using gelatin-phenol formaldehyde polymer blend as template. The mesostructures and particular morphologies of the calcium phosphate composite were characterized by TEM observation. Furthermore, we attempted to remove the organic template without destroying the porosity of the mesostructures. Other detailed studies on the formation of porous calcium phosphate will be further explored.

    Part III:Synthesis of uniform mesoporous silica spheres.
    On the bases of theory of self-assemble chemistry, we proposed new chemical compositions to synthesize the uniform mesoporous silica spheres with different diameters using alkyltrimethylammonium (CnTMAB, n=12-18) surfactant as structure-directing agent and sodium silicate as silica source under a near neutral condition (pH=7.0-8.5). We used a high-speed centrifugation to gain a wet, opaline mesoporous silica-sphere sheet which possesses the distinguishing characteristic of the photonic crystals. And the color of the sheet depends on the diameter of the mesoporous silica spheres, which can be controlled with pH value and the amount of added cosolvent (i.e. ethanol). After calcination at 600℃ for 6h, the mesoporous silica sphere sheet turn to the opaque ones. We can use furfuryl alcohol as carbon source to infiltrate these mesoporous silica sphere sheet. After pyrolysis under N2 atmosphere and silica etching by HF solution, macroporous carbons was prepared.

    第一章 緒論 1.1 中孔洞材料介紹 1 1.1.1 中孔洞材料的研究範疇 2 1.2 界面活性劑性質簡介 4 1.2.1 界面活性劑的分類 4 1.2.2 微胞的形成 5 1.3 矽酸鹽的基本概念 7 1.4 明膠(Gelatin) 9 1.4.1 明膠簡介 9 1.4.2 綠色化學 10 1.5 光子晶體(Photonic Crystals) 11 1.5.1 研究方向與目的 11 1.5.2 光晶之光學性質 14 1.5.3 光晶之應用 15 第二章 實驗部份 2.1 化學藥品 17 2.2 合成步驟 18 2.2.1 以明膠為模板合成中孔洞氧化矽材料 18 2.2.2 以明膠-酚醛樹脂混摻體為模板合成中孔洞氧化矽及碳材 20 2.2.3 以明膠或明膠-酚醛樹脂混掺體為有機模板合成中孔洞磷酸鈣 21 2.2.4 合成高均勻度的中孔洞氧化矽球 22 2.2.5 以碳材拓印中孔洞氧化矽球結構 23 2.3 儀器鑑定分析 24 2.3.1 熱重分析儀 24 2.3.2 穿透式電子顯微鏡 25 2.3.3 掃描式電子顯微鏡 25 2.3.4 氮氣等溫吸附/脫附測量 25 2.3.5 X光粉末繞射儀光譜 26 2.3.6 界面電位分析儀 26 2.3.7 雷射光散射法粒徑測定儀 27 2.3.8 高轉速離心機 27 第三章 以明膠或明膠-酚醛樹脂混掺體為模板合成中孔洞材料 3.1 實驗動機與目的 29 3.2 以明膠為模板合成中孔洞氧化矽材料 31 3.2.1 水熱反應對系統的影響 31 3.2.2 改變pH值對反應系統的影響 32 3.2.3 改變無機物水量對反應系統的影響 35 3.2.4 改變矽酸鈉熟化時間對反應系統的影響 36 3.2.5 以乾式含浸法製作中孔洞碳材 38 3.3 以明膠-酚醛樹脂(PF2180)混摻體為模板合成中孔洞材料 39 3.3.1 改變pH值對反應系統的影響 41 3.3.2 增加酚醛樹脂(PF2180)含量對反應的影響 44 3.3.3 改變總水量對反應的影響 49 3.3.4 使用鹼性合成法製備中孔洞碳材 52 3.4 以明膠-酚醛樹脂(PR620)混摻體為模板合成中孔洞材料 54 3.4.1 水熱反應與水熱天數對系統的影響 54 3.4.2 改變pH值對反應系統的影響 61 3.4.3 改變總水量對反應系統的影響 65 3.4.4 改變酚醛樹脂(PR620)含量對反應的影響 67 3.4.5 使用鹼性合成法製備中孔洞碳材 71 第四章 以明膠或明膠-酚醛樹脂混掺體為模板合成中孔洞磷酸鈣 4.1 實驗動機與目的 75 4.2 實驗結果與討論 77 4.2.1 磷酸鈣複合材料 77 4.2.2 移除有機物的方法 80 第五章 高均勻度中孔洞氧化矽球之合成 5.1 研究動機與目的 87 5.2 實驗設計 88 5.3 實驗結果與討論 90 5.3.1 合成機制探討 90 5.3.2 pH值效應 92 5.3.3 助溶劑的效應 93 5.3.4 界面活性劑濃度效應 99 5.3.5 加入不同的酸對合成系統的影響 102 5.3.6 輔助鑑定工具 103 5.3.7 光晶照片 106 5.3.8 以碳材拓印光子晶體結構 109 第六章 總結論 113 參考文獻 117

    (1)C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,Nature, 1992, 359, 710.
    (2)J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    (3)IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
    (4) J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem. 2003, 115 , 3254.
    (5) A. Vinu, V. Murugesan, M. Hartmann. Chem. Mater. 2003, 15, 1385.
    (6) H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
    (7) V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
    (8)H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    (9)J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
    (10)A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
    (11)Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
    (12)A. Walcarius, M. Etienne, B. Lebeau. Chem. Mater. 2003, 15, 2161.
    (13)T. Yokoi, H. Yoshitake, T. Tatsumi. J. Mater. Chem. 2004, 14 , 951.
    (14)J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature., 2000, 48, 289.
    (15) E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
    (16) Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
    (17) F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
    (18) Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
    (19) Jiang, P.; Bertone, J. F.; Colvin, V. L. Science. 2001, 291, 453.
    (20) Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028.
    (21) Huo, Q. S.; Feng, J. L.; Schuth, F.; Stucky, G. D. Chem. Mater. 1997, 9, 14.
    (22) Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J. Nature. 1999, 398, 223.
    (23) Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649.
    (24) S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
    (25) N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
    (26) E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
    (27) T. F. Todros, Surfactants, Academic Press : London, 1984.
    (28) R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    (29) C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids 1985, 70, 301.
    (30) http://www.nsc.gov.tw/_newfiles/popular_science.asp?add_year=2005&popsc_aid=140
    (31) David J. C. Constable, Alan D. Curzons, Luisa M. Freitas dos Santos, Graham R.Geen,* Robert E. Hannah, John D. Hayler, John Kitteringham, Michael A.McGuire, John E. Richardson, Paul Smith, R. Lee Webb and Marvin Yu, Green Chemistry, 2001, 3, 7–9
    (32) Alan D. Curzons,* David J. C. Constable, David N. Mortimer and Virginia L.Cunningham, Green Chemistry, 2001, 3, 1–6
    (33) 光子晶體 從蝴蝶翅膀到奈米光子學 欒丕剛 陳啟昌 著
    (34) W. Stöber, A. Frank and E. Bohn, J. Colloid, Interface, Sci., 1968,26, 62.
    (35) M. D. Sacks and T.-Y. Tseng, J. Am. Ceram. Soc., 1984, 67, 526.
    (36) E. Matijevic, Langmuir, 1994, 10, 8.
    (37) K. Kosuge, T. Murakami, N. Kikukawa and M. Takemori, Chem.Mater., 2003, 15, 3184.
    (38) K. Schumacher, C. du F. von Hohenesche, K. K. Unger, R. Ulrich,A. D. Chesne, U. Weisner and H. W. Spiess, Adv. Mater., 1999, 11,1194.
    (39) R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A. E.Ostafin, Chem. Mater., 2002, 14, 4721.
    (40) M. Grn, I. Lauer and K. K. Unger, Adv. Mater., 1997, 9, 254.
    (41) H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, Langmuir 1997, 13, 6009.
    (42) B. Gates, D. Qin, Y. Xia, Adv. Mater. 1999, 11, 466. B. Gates, S. H. Park, Y. Xia, J. Lightwave Technol. 1997, 17, 1956.
    (43) K. Busch, S. John, Phys. Rev. Lett. 1999, 83, 967.
    (44) Y. A. Vlasov, V. N. Astrotov, O. Z. Astratov, A. A. Kaplynanskii, V.N. Bogomolov, A. V. Prokofiev, Phys. Rev. B 1997, 55, R13 357.
    (45) J. V. Sanders, Nature, 1964, 204, 1151.
    (46) K. W. Gallis, J. T. Araujo, K. J. Duff, J. G. Moore, C. C. Landry, Adv. Mater., 1999, 11, 1452.
    (47) C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S.Jeftinija, S. Y. Lin, J. Am. Chem. Soc.; 2003; 125(15); 4451.
    (48) M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, Appl. Phys. Lett.,2000, 76, 952.
    (49) T. F. Krauss, R. M. De La Rue, Progress in Quantum Electron.;1999,23, 51.
    (50) M. Boroditsky, T. F. Krauss, R. Vrijen, R. Bhat, E. Yablonovith, Appl. Phys. Lett., 1999, 75, 1036.
    (51) Stucky et al, J. Am. Chem. Soc. 1998, 120, 6024-6036
    (52) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am.Chem. Soc.1998, 120, 6024.
    (53) http://brc.se.fju.edu.tw/protein/purify/isoelect.htm#
    (54) http://polymer.che.ncku.edu.tw/papers/C-Bio/C036.pdf
    (55) http://hansmalab.physics.ucsb.edu/afmbone.html
    (56) L. L. Hench and E. C. Ethridge, “Biomaterial” A cademic Press. Inc. (1982)
    (57) H. P. Lin, C. P. Tsai, Chemistry Letters, 2003, 32, 1092.
    (58) Göteborg, Lund and Stockholm, Surfactant and Polymers in Aqueous solution, November, 1997.
    (59) R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi and R. K. Singh, J.Colloid Interface Sci., 2000, 227, 302.
    (60) J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals ; Princeton University, Princeton, NJ, 1995.
    (61) F. Garca-Santamara, V. Salgueiriño-Maceira, C. Lpez, and L. M. Liz-Marzn, Langmuir, 2002, 18, 4519.
    (62) P. Ni, P. Dong, B. Cheng, X. Li, and D. Zhang, Adv. Mater., 2001, 13, 437.

    下載圖示 校內:2009-07-17公開
    校外:2009-07-17公開
    QR CODE