| 研究生: |
林廷翰 Lin, Ting-Han |
|---|---|
| 論文名稱: |
以水熱法合成硫化鋅及其奈米線陣列之研究 The synthesis of zinc sulfide and its nanowire arrays via hydrothermal method |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 硫化鋅 、水熱法 、硫脲 、硫代乙醯胺 、醋酸鋅 |
| 外文關鍵詞: | zinc sulfide, hydrothermal method, thiourea, thioacetamide, zinc acetate dehydrate |
| 相關次數: | 點閱:103 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫化鋅奈米線由於其優異之光電性質,目前已成為奈米材料領域最受矚目的研究之ㄧ。然而,製備大規模且均ㄧ性佳之硫化鋅奈米線陣列仍是ㄧ大挑戰。因此本研究欲利用水熱法並以孔洞型態均一之多孔性陽極氧化鋁作為模板,合成硫化鋅一微奈米線陣列,探討其合成機制與光電特性。
本研究所使用之前驅物溶液分別為氯化鋅及硫脲之混合溶液(後段簡本實驗分別以三組不同之前驅物溶液製備硫化鋅粉末及其奈米線陣列。三種稱為A溶液)、氯化鋅及硫代乙醯胺之混合溶液(後段簡稱為B溶液)、含水醋酸鋅及硫脲之混合溶液(後段簡稱為C溶液)。此外,硫化鋅粉末及其奈米線陣列之成長基材則分別為玻璃與多孔性陽極氧化鋁模板。
實驗結果顯示此三組前驅物溶液皆可製得硫化鋅粉末,但僅以C溶液可成功製得硫化鋅奈米線陣列。就硫化鋅粉末之型態而言,A溶液所製得之粉末為空心微球體,另外兩種溶液所製備者則是實心微球體。此外,以B溶液所製得之實心微球體由尺寸約10nm之球狀奈米顆粒所構成,而C溶液所製得者則由約40至50nm之球狀、棒狀奈米顆粒所構成。就硫化鋅奈米線之型態而言,其直徑約100nm且符合模板孔洞尺寸。
本研究可歸納出不同前驅物作用於硫化鋅粉末之效應,亦可得知其奈米線陣列之形成機制。
Zinc sulfide nanowires have attracted great attention because of the specific optical and electronic properties. The preparation of large-scale and homogeneous zinc sulfide nanowire arrays is still a challenge.
In this research, three types of precursor solution were used for the synthesis of ZnS powder and its nanowire arrays. The three solutions include zinc chloride and thiourea(noted as solution A ), zinc chloride and thioacetamide(noted as solution B), zinc acetate dihydrate and thioacetamide(noted as solution C). In addition, the growth substrate of ZnS powder and nanowire arrays are glass and porous alumina membrane, respectively.
Experimental results indicate that ZnS powder can be synthesized with all types of precursor solution. However, ZnS nanowire arrays can be synthesized with only solution C. The morphology of the powder prepared with solution A is hollow microspheres, but that of the powders prepared with other solutions is both solid microspheres. Moreover, the solid microspheres prepared with solution B consist of the spherical nanopartricles with size is about 10nm, and the product prepared with solution C consist of the spherical and rod-like nanoparticles whose size is about 40-50 nm. For the morphology of the ZnS nanowires, their diameter is about 100nm and that fit the pore size of the templates.
From our research, we conclude the effect of different precursors which works on the ZnS powders and the mechanism of the formation of ZnS nanowire arrays.
[1] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension:
Synthesis and Properties of Nanowires and Nanotubes” Acc. Chem. Res. 32 435
(1999).
[2] Y. Wu, H. Yan, and P. Yang, “Inorganic Semiconductor Nanowires: Rational
Growth, Assembly, and Novel Properties” Chem. Eur. J. 8 1260 (2002).
[3] B.D. Terris, and T. Thomson, “Nanofabricated and self-assembled magnetic
structures as data storage media” J. Phys. D: Appl. Phys. 38 R199 (2005).
[4] P.V. Braun, P. Wiltzius, “Microporous materials - Electrochemically grown
photonic crystals” Nature. 402 603 (1999).
[5] G. Zhang, and J. Chen, “Synthesis and Application of La0.59Ca0.41CoO3
Nanotubes Batteries, Fuel Cells, and Energy Conversion ” J. Electrochem.
Soc. 152 A2069 (2005).
[6] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of
silicon photonic bandgap crystals” Nature. 414 289 (2001).
[7] T. M. Chen, F. M. Pan, J. I. Hung, L. Chang, S. C. Wu, and C. F. Chen,“Amorphous
Carbon Coated Silicon Nanotips Fabricated by MPCVD Using Anodic Aluminum
Oxide as the Template”, J. Electrochem. Soc. 154 D215 (2007).
[8] Huczko, “Template-based synthesis of nanomaterials” Appl. Phys. A. 70 365
(2000).
[9] C.R. Martin, “Membrane-Based Synthesis of Nanomaterials” Chem. Mater. 8 1739
(1996).
[10] G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode,
Nature. 30 433 (1978).
[11] G. E. Thompson, and G. C. Wood, “Porous anodic film formation on aluminium”
Nature. 19 230 (1981).
[12] S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General Notes
and Theory”, in Surface treatment finishing of aluminum and its alloys, 2nd ed.,
Finishing Publications Ltd., Teddington, Middlesex, UK, Vol. 1 Chapter6 pp.289
(1987).
[13] H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step
Replication of Honeycomb Structures of Anodic Alumina” Science. 9 1466 (1995).
[14] R. Inguanta, C. Sunseri, S. Piazza, “Photoelectrochemical Characterization of Cu2O
Nanowire Arrays Electrodeposited into Anodic Alumina Membranes” Electrochem.
Solid State Lett. 10 K63 (2007).
[15] R. Inguanta, S. Piazza, and C. Sunseri, “Template electrosynthesis of CeO2
Nanotubes Template electrosynthesis of CeO2 nanotubes” Nanotechnol. 18 485605
(2007).
[16] T. Kondo, M. Tanji, K. Nishio, and H. Masuda, “Surface-Enhanced Raman
Scattering in Multilayered Au Nanoparticles in Anodic Porous Alumina Matrix”
Electrochem. Solid State Lett. 9 C189 (2006).
[17] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodicarrayof
uniform ZnO nanorods by secondorder selfassembly” Appl. Phys. Lett. 84
3376 (2004).
[18] J. Xu and W. Ji, “Characterization of ZnS Nanoparticles Prepared by New Route”
J. Mater. Sci. Lett. 18 115 (1999).
[19] J. X. Ding , J. A. Zapien , W. W. Chen , Y. Lifshitz , S. T. Lee , and X. M. Meng ,
“Lasing in ZnS nanowires grown on anodic aluminum oxide templates” Appl. Phys.
Lett. 85 2361 (2004).
[20] X. P. Shen , M. Han , J. M. Hong , Z. L. Xue , and Z. Xu , “Template-based CVD
synthesis of ZnS nanotube arrays” Chem. Vapor. Depos. 11 250 (2005).
[21] T. Y. Zhai , Z. J. Hu , Y. Ma , W. S. Yang , L. Y. Zhao , and J. N. Yao, “Synthesis of
ordered ZnS nanotubes by MOCVD-template method” Mater. Chem. Phys. 100 281
(2006).
[22] X. J. Xu , G. T. Fei , W. H. Yu , X. W. Wang , L. Chen , L. D. Zhang, “Preparation
and formation mechanism of ZnS semiconductor nanowires made by the
electrochemical deposition method” Nanotechnol. 17 426 (2006).
[23] G. X. Qian , K. F. Huo , J. J. Fu , and P. K. Chu , “Direct Growth of Quasi-Aligned
Ultrafine ZnS Nanowire Arrays on Conducting Zinc Foils and Their Field Emission
Properties” J. Nanosci. Nanotechnol. 9 3347 (2009).
[24] G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode,
“Nucleation and growth of porous anodic films on aluminium” Nature. 30 433
(1978).
[25] G. E. Thompson, and G. C. Wood, “Porous anodic film formation on aluminium”
Nature. 19 230 (1981).
[26] S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General
Notes and Theory, in Surface treatment finishing of aluminum and its alloys, 2nd ed.,
Finishing Publications Ltd” Teddington, Middlesex, UK. Vol. 1 Chapter6 p.289
(1987).
[27] Z. X. Su, G. Hahner, and W. Z. Zhou, “Equilibrium Morphology of Mixed
Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative
Humidity and Surfactants” Jourmal of Materials Chemistry. 18 5787 (2008).
[28] V. P. Parkhutik, “Theoretical modelling of porous oxide growth on aluminium”
Journal of Physics D: Applied Physics. 25 1258 (1992).
[29] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings
on aluminum” J. Electrochem. Soc. 100[9] 411 (1953).
[30] D. Almawlawi, K. A. Bosnick, A.Osika, and M. Moskovits, “Fabrication of
Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks”
Adv. Mater. 12 1252 (2000).
[31] H. Masuda, F. Hasegwa, and S. Ono, “Self‐Ordering of Cell Arrangement of Anodic
Porous Alumina Formed in Sulfuric Acid Solution” J. Electrochem. Soc. 144 L127
(1997).
[32] W. Lee, R. Ji, U. Gosele, and K. Nielsch, “Fast fabrication of long-range ordered
porous alumina membranes by hard anodization” Nat. Mater. 5 741 (2006).
[33] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic
porous alumina with large-size pores in phosphoric acid solution” Japanese Journal
of Applied Physics. 37 (1998) L1340.
[34] H. Masuda, and M. Sato, “Fabrication of Gold Nanodot Array Using Anodic
Porous Alumina as an Evaporation Mask” Jpn. J. Appl. Phys. 35 126 (1996).
[35] Y. Li , G. W. Meng , L. D. Zhang , and F. Phillipp, “Ordered semiconductor ZnO
nanowire arrays and their photoluminescence properties” Appl. Phys. Lett. 76
2011 (2000).
[36] B. Das , and S. P. McGinnis, “Novel template-based semiconductor
nanostructures and their applications” Appl. Phys. A. 71 681 (2000).
[37] Z. Zhang , T. Shimizu , L. J. Chen , S. Senz , and U. Goesele, “Bottom-Imprint
Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium
Catalyst” Adv. Mater. 21 4701 (2009).
[38] H. Yoon , K. Seo , N. Bagkar , J. In , J. Park , J. Kim , and B. Kim, “Vertical
Epitaxial Co5Ge7 Nanowire and Nanobelt Arrays on a Thin Graphitic Layer for
Flexible Field Emission Displays” Adv. Mater. 21 4979 (2009).
[39] Z. Jin, R. Guo, C. Shi, and X. Huo, Fundamentals of Materials science, Tianjin
University Press, Chapter 5 (2005).
[40] Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X.D.Wang,
Z.L.Wang, and R.J.Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts” Nat.
Mater. 4 922 (2005).
[41] L. P. Wang, S. G. Huang, and Y. J. Sun, “Low-temperature synthesis of hexagonal
transition metal ion doped ZnS nanoparticles by a simple colloidal method” Applied
Surface Science. 270 178 (2013).
[42] J. Du, X. P. Yu, Y. Wu, and J. W. Di, “ZnS nanoparticles electrodeposited onto ITO
electrode as a platform for fabrication of enzyme-based biosensors of glucose”
Materials Science and Engineering C. 33 2031 (2013).
[43] T. T. Q. Hoa, L. V. Vu, T. D. Canh, and N. N. Long, “Large magnetic‐field‐induced
strains in Ni2MnGa single crystals” Journal of Physics: Conference Series. 187
012081 (2009).
[44] S. L. Liu, Z. Q. Wang, H. Liu, and Q. Q. Xu, “Hydrothermal synthesis and
optical property of ZnS/CdS composites” J. Mater. Res. 28 21 (2013).
[45] X. J. Wang, F. Q. Wan, K. Han, C. X. Chai, and K. Jiang, “Large-scale synthesis
well-dispersed ZnS microspheres and their photoluminescence, photocatalysis
properties” Materials Characterization. 59 1765 (2008).
[46] D. F. Moore , Y. Ding , and Z. L. Wang, “Crystal Orientation-Ordered ZnS
Nanowire Bundles” J. Am. Chem. Soc. 126 14372 (2004).
[47] Y. Q. Li , J. X. Tang ,and H. Wang , J. A. Zapien , Y. Y. Shan , S. T. Lee,
“Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS
nanoribbons” Appl. Phys. Lett. 90 093127 (2007).
[48] G. Z. Shen , Y. Bando , D. Golberg , and C. W. Zhou, “Heteroepitaxial Growth of
Orientation-Ordered ZnS Nanowire Arrays” J. Phys. Chem. C.11 12299 (2008).
[49] Z. G. Chen , L. Cheng , J. Zou , X. D. Yao , G. Q. Lu , and H. Cheng, “ZnS
nanowire arrays on Si for field emitters” Nanotechnol. 21 065701 (2010).
[50] S. Biswas , T. Ghoshal , S. Kar , S. Chakrabarti , and S. Chaudhuri, “ZnS Nanowire
Arrays: Synthesis, Optical and Field Emission Properties” Cryst. Growth. Des. 8
2171 (2008).
[51] C. H. Jin, H. S. Kim, S. H. Park, S. Y. An, and C. M. Lee, “Structure and optical
properties of one-dimensional ZnS nanostructures synthesized using a single
evaporation process” Phys. Scr. T157 14043 (2013).
[52] X. P. Shen, M. Han, J. M. Hong, Z. L. Xue, and Z. Xu, “Template-Based CVD
Synthesis of ZnS Nanotube Arrays” Chem. Vap. Deposition. 11 250 (2005).
[53] J. X. Ding , J. A. Zapien , W. W. Chen , Y. Lifshitz , S. T. Lee , and X. M. Meng,
“Lasing in ZnS nanowires grown on anodic aluminum oxide templates” Appl. Phys.
Lett. 85 2361 (2004).
[54] H. Y. Sun , Y. L. Yu , X. H. Li , W. Li , F. Li , B. T. Liu , and X. Y. Zhang,
“Controllable growth of electrodeposited single-crystal nanowire arrays: The
examples of metal Ni and semiconductor ZnS” J. Cryst. Growth. 307 (2007) 472.
[55] Hong-Ming Lin, 奈米材料合成技術, Department of Materials Engineering
Tatung University.
[56] R. I. Walton “Subcritical Solvothermal Synthesis of Condensed Inorganic materials”
Chemical Society Reviews. 31 230 (2002). ,
[57] A. Rabenau, Angewandte Chemie: International Editionin English. 24, (1985),
1026-1040. “The Role of Hydrothermal Synthesis in Preparative Chemistry"
[58] M. Salavati-Niasari, F. Davar, and M. Reza Loghman-Estarki, “Controllable
synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous
solution route at low temperatures and conversion to wurtzite ZnS nanorods via
thermal decompose of precursor”Journal of Alloys and Compounds. 494 (2010) 199.
[59] W. Yu, P. F. Fang, and S. J. Wang, “ZnS nanorod arrays synthesized by an
aqua-solution hydrothermal process upon pulse-plating Zn nanocrystallines”Applied
Surface Science. 255 5709 (2009).
[60] Z. H. Ibupoto, K. L. Khun, X. J. Liu, and M. Willander, “Hydrothermal Synthesis of
Nanoclusters of ZnS Comprised on Nanowires” Nanomaterials. 3 (2013) 564.
[61] J. S. Lloyd, C. M. Fung, D. Deganello, R. J. Wang, T. G. G. Maffeis, S. P. Lau, and
K. S. Teng, “Flexographic printing-assisted fabrication of ZnO nanowire
devices” Nanotechnol. 24 195602 (2013).
[62] S. Sarkar, and D. Basak, “A low temperature in situ facile technique to enhance
ultraviolet emission of zinc oxide nanorods and its mechanistic insights” Chemical
Physics Letters. 516 192 (2011).
[63] Y. Wang, Y. H. Li, Z. Z. Zhou, X. H. Zu, and Y. L. Deng, “Evolution of the zinc
compound nanostructures in zinc acetate single-source solution” J Nanopart Res. 13
5193 (2011).
[64] C. D. Bojorge, V. R. Kent, E. Teliz, H. R. Canepa, R. Henrıquez, H. Gomez, R. E.
Marotti, and E. A. Dalchiele, “Zinc-oxide nanowires electrochemically grown onto
sol–gel spin-coated seed layers” Phys. Status Solidi A. 208[7] 1662 (2011).
[65] C. Te. Wu and J. J. Wu, “Room-temperature synthesis of hierarchical nanostructures
on ZnO nanowire anodes for dye-sensitized solar cells” J. Mater. Chem. 21 13605
(2011).
[66] J.D. Patel, F. Mighria, A. Ajjia, and T. K. Chaudhurid, “Morphology and size control
of lead sulphide nanoparticles produced using methanolic lead acetate trihydrate –
thiourea complex via different precipitation techniques” Materials Chemistry and
Physics. 132 747 (2012).
[67] W. T. Wu, J. S. Chen and J. J. Wu, “Synthesis of Tungsten Oxide Powders Via
Thiourea-Assisted Route: Tailoring from Hierarchical Microspheres to
Mesoporously Structured Nanoparticles” J. Am. Ceram. Soc. 93[8] 2268 (2010).
[68] S. Rengaraj, S. H. Jee, S. Venkataraj, Y. H. Kim, S. Vijayalakshmi, E. Repo, A.
Koistinen, and M. Sillanpaa, “CdS Microspheres Composed of Nanocrystals and
Their Photocatalytic Activity” Journal of Nanoscience and Nanotechnol. 11 1
(2011).
[69] R. M. Xing, S. H. Liu, and S. F. Tian, “Microwave-assisted hydrothermal synthesis
of biocompatible silver sulfide nanoworms” Journal of Nanopart Res. 13 4847
(2011).
[70] J. Y. Kwon, S. J. Hong, H. B. Lee, J. Y. Yeo, S. S. Lee, and S. H. Ko, “Direct
selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor
on a heated substrate” Nanoscale Research Letters. 8 489 (2013).
[71] C. C. Lin and Y. Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of
zinc acetate dihydrate” Materials Chemistry and Physics. 113 334 (2009).
[72] Y. D. Zhang, C. C. Pan, Y. G. Zhang, and W. W. He, “Self-template hydrothermal
synthesis ZnS microspheres” Cryst. Res. Technol. 46 718 (2011).
[73] M. Mohammadikish, F. Davar, M. R. Loghman-Estarki, and Z. Hamidi, “Synthesis
and characterization of hierarchical ZnS architectures based nanoparticles in the
presence of thioglycolic acid” Ceramics International. 39 3173 (2013).
[74] G. H. Yue, P. X. Yan, D. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, and J. Z. Liu,
“Hydrothermal synthesis of single-crystal ZnS nanowires” Appl. Phys. A. 84 409
(2006).
[75] H. Zhang, D. Yang, X. Ma, D. Que, “Some critical factors in the synthesis of CdS
nanorods by hydrothermal process” Mater. Lett. 59 3037 (2005).
[76] C.L. Yan, and D.F. Xue, “Conversion of ZnO nanorod arrays into ZnO/ZnS
nanocable and ZnS nanotube arrays via and in situ chemistry strategy” The Journal
of Physical Chemistry B. 110 25850 (2006).
[77] Y. Liu, G. Xi, S. Chen, X. Zhang, Y. Zhu, and Y.T. Qian, “New ZnS/organic
composite nanoribbons: characterization, thermal stability and photoluminescence”
Nanotechnol. 18 285605 (2007).
[78] D. A. Reddy, D. H. Kim, S. J. Rhee, B. W. Lee, and C. Liu, “Tunable blue –green-
emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV
white LEDs” Nanoscale Research Letters. 9 20 (2014).