簡易檢索 / 詳目顯示

研究生: 林廷翰
Lin, Ting-Han
論文名稱: 以水熱法合成硫化鋅及其奈米線陣列之研究
The synthesis of zinc sulfide and its nanowire arrays via hydrothermal method
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 108
中文關鍵詞: 硫化鋅水熱法硫脲硫代乙醯胺醋酸鋅
外文關鍵詞: zinc sulfide, hydrothermal method, thiourea, thioacetamide, zinc acetate dehydrate
相關次數: 點閱:103下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鋅奈米線由於其優異之光電性質,目前已成為奈米材料領域最受矚目的研究之ㄧ。然而,製備大規模且均ㄧ性佳之硫化鋅奈米線陣列仍是ㄧ大挑戰。因此本研究欲利用水熱法並以孔洞型態均一之多孔性陽極氧化鋁作為模板,合成硫化鋅一微奈米線陣列,探討其合成機制與光電特性。
    本研究所使用之前驅物溶液分別為氯化鋅及硫脲之混合溶液(後段簡本實驗分別以三組不同之前驅物溶液製備硫化鋅粉末及其奈米線陣列。三種稱為A溶液)、氯化鋅及硫代乙醯胺之混合溶液(後段簡稱為B溶液)、含水醋酸鋅及硫脲之混合溶液(後段簡稱為C溶液)。此外,硫化鋅粉末及其奈米線陣列之成長基材則分別為玻璃與多孔性陽極氧化鋁模板。
    實驗結果顯示此三組前驅物溶液皆可製得硫化鋅粉末,但僅以C溶液可成功製得硫化鋅奈米線陣列。就硫化鋅粉末之型態而言,A溶液所製得之粉末為空心微球體,另外兩種溶液所製備者則是實心微球體。此外,以B溶液所製得之實心微球體由尺寸約10nm之球狀奈米顆粒所構成,而C溶液所製得者則由約40至50nm之球狀、棒狀奈米顆粒所構成。就硫化鋅奈米線之型態而言,其直徑約100nm且符合模板孔洞尺寸。
    本研究可歸納出不同前驅物作用於硫化鋅粉末之效應,亦可得知其奈米線陣列之形成機制。

    Zinc sulfide nanowires have attracted great attention because of the specific optical and electronic properties. The preparation of large-scale and homogeneous zinc sulfide nanowire arrays is still a challenge.
    In this research, three types of precursor solution were used for the synthesis of ZnS powder and its nanowire arrays. The three solutions include zinc chloride and thiourea(noted as solution A ), zinc chloride and thioacetamide(noted as solution B), zinc acetate dihydrate and thioacetamide(noted as solution C). In addition, the growth substrate of ZnS powder and nanowire arrays are glass and porous alumina membrane, respectively.
    Experimental results indicate that ZnS powder can be synthesized with all types of precursor solution. However, ZnS nanowire arrays can be synthesized with only solution C. The morphology of the powder prepared with solution A is hollow microspheres, but that of the powders prepared with other solutions is both solid microspheres. Moreover, the solid microspheres prepared with solution B consist of the spherical nanopartricles with size is about 10nm, and the product prepared with solution C consist of the spherical and rod-like nanoparticles whose size is about 40-50 nm. For the morphology of the ZnS nanowires, their diameter is about 100nm and that fit the pore size of the templates.
    From our research, we conclude the effect of different precursors which works on the ZnS powders and the mechanism of the formation of ZnS nanowire arrays.

    總目錄 摘要 I Abstract II 致謝 III 總目錄 V 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2 研究目的與方向 2 第二章 文獻回顧 3 2-1 多孔性陽極氧化鋁模板 3 2-1-1 多孔性陽極氧化鋁模版成長機制 3 2-1-2 多孔性陽極氧化鋁模板型態 6 2-1-3一次陽極氧化處理及二次陽極氧化處理之關係 10 2-2 硫化鋅簡介 13 2-2-1硫化鋅結構 13 2-2-2硫化鋅之合成 15 2-3 水熱法簡介 27 2-3-1 水熱法原理.......................................................................................27 2-3-2 高壓反應釜的反應容積與溫度之關係...........................................28 2-3-3 水熱法優點.......................................................................................32 2-3-4 以水熱法製備ZnS............................................................................33 2-4特殊前驅物之性質及其合成物型態之特色................................................37 2-4-1 硫脲(thiourea, Tu).............................................................................38 2-4-2 硫代乙醯胺(thioacetamide, TAA)……………………..................42 2-4-3 醋酸鋅(zinc acetate dihydrate)..........................................................46 第三章 實驗步驟與方法 51 3-1實驗藥品及設備 51 3-1-1實驗藥品 51 3-1-2 實驗儀器 52 3-2 實驗方法 53 3-2-1 多孔性陽極氧化鋁模板 53 3-2-2 水熱法製程 54 3-3 微結構檢測及性質分析 57 3-3-1 X光繞射分析儀(X-ray diffractometer) 57 3-3-2 掃描式電子顯微鏡(Scanning electron microscopy) 57 3-3-3 穿透式電子顯微鏡(Transmission electron microscopy) .58 3-3-4 螢光光譜儀(Photoluminescense spectrometer) 58 第四章 結果與討論 59 4-1多孔性陽極氧化鋁模板之製備 59 4-2 水熱法合成硫化鋅 61 4-2-1 水熱法合成硫化鋅粉末 61 4-2-1-1 以氯化鋅及硫脲合成硫化鋅粉末 61 4-2-1-2 以氯化鋅及硫代乙醯胺合成硫化鋅粉末 67 4-2-1-3 以醋酸鋅及硫脲合成硫化鋅粉末 74 4-2-2 水熱法搭配AAO模板合成硫化鋅奈米線陣列 78 4-2-2-1 以氯化鋅及硫脲製備ZnS/AAO 78 4-2-2-2 以氯化鋅及硫代乙醯胺製備ZnS/AAO 81 4-2-2-3 以醋酸鋅及硫代乙醯胺製備ZnS/AAO 84 4-2-3 醋酸鋅及硫代乙醯胺之濃度效應對ZnS粉末之影響....................88 第五章 結論 98 第六章 參考文獻 100 圖目錄 圖2-1 陽極氧化鋁模板孔洞生成示意圖(I)成長初期,可以看出有一層氧化鋁層的薄膜在純鋁基板上。(II)酸性電解液開始對氧化鋁層進行侵蝕,氧化鋁層開始產生裂縫。(III)裂縫開始加深,並開始形成孔道。(IV)氧化與溶解效應達到動態平衡,使孔道開始規則的穩定成長-----------------------------------------------------------5 圖2-2 此為多孔性陽極氧化鋁模板之模型,一般模板分成三部分,上層氧化鋁孔道層。Dc為孔洞間距,Dp為孔洞直徑。並可以看出每個六角狀槽室(cell)中央皆有孔洞存在--------------------------------------------------------------------------------------8 圖2-3 不同的酸性電解液之陽極氧化電壓(V)與自組裝孔洞間距(Dint)之關係圖-9 圖2-4 此圖為進行兩次陽極處理並做酸洗過程圖。圖(a)為做完一次陽極處理所生成不規則的孔道,圖(b)為使用酪酸移除到不規則孔道,留下半圓形槽狀結構,圖(c)和圖(d)為進行第二次陽極處理,並藉由第一次酸洗所留下之半圓形槽狀結構為基礎,生成筆直的氧化鋁孔洞層-----------------------------------------------------11 圖2-5 使用磷酸擴孔所能達到最大的孔洞範圍上視圖。圖(A)為一開始浸泡磷酸之孔洞大小,而可以從圖(B)看出隨著浸泡時間拉長孔洞會逐漸增大,最後所能達到最大孔洞直徑如圖(C)所示,只能擴大到六角狀結構的邊緣-------------------12 圖2-6 Zinc blende and Wurzite structure of zinc sulfide----------------------------------13 圖2-7 溶膠凝膠法及電化學沉積法所製備之ZnS奈米顆粒結構圖------------------17 圖2-8 水熱法所製備之ZnS奈米顆粒結構圖-------------------------------------------18 圖2-9 水熱法所製備之微球體結構圖-----------------------------------------------------19 圖2-10 同質磊晶法所製備之ZnS奈米線結構圖---------------------------------------20 圖2-11 異質磊晶法所製備之ZnS奈米線結構圖---------------------------------------21 圖2-12 熱蒸鍍法所製備之ZnS奈米線結構圖------------------------------------------22 圖2-13 CVD所製備之ZnS奈米管之SEM圖-------------------------------------------23 圖2-14 VLS合成法所製備之ZnS奈米線結構圖---------------------------------------24 圖2-15 電化學沉積法所製備之ZnS奈米線結構圖------------------------------------25 圖2-16 水熱法所製備之ZnS奈米棒結構圖---------------------------------------------26 圖2-17 高壓釜之構造圖---------------------------------------------------------------------29 圖2-18 水熱法壓力釜中溶液反應溫度與反應體積之壓力關係圖------------------30 圖2-19 水熱法壓力釜中溶液不同的填滿體積與溫度高低,對溶劑殘留量或蒸發多寡的影響-------------------------------------------------------------------------------------31 圖2-20 SEM images of the as-synthesized product at 108 ◦C for 5 h at different concentration of TGA: (a) 0.05M; (b) 0.08M; (c) 0.10M; (d) 0.25M; (e) 0.35M-----34 圖2-21 TEM image of the ZnS nanorod. The insert: SEAD pattern of the ZnS nanorod------------------------------------------------------------------------------------------35 圖2-22 Scanning electron microscopy (SEM) images of ZnS nanomaterial: (a) low magnification, (b) high magnification, (c) effect of higher concentration of cetyltrimethyl ammonium bromide cationic (CTAB)-------------------------------------36 圖2-23 硫脲及尿素之結構圖---------------------------------------------------------------39 圖2-24 Scanning electron micrographs of PbS particles produced via CBD, SCBD and MACBD techniques-----------------------------------------------------------------------40 圖2-25 Scanning electron microscopic images of tungsten oxides with various thiourea additions. (a), (b) T-0; (c), (d) T-045; (e), (f) T-080; and(g), (h) T-122-------41 圖2-26 硫代乙醯胺之結構圖--------------------------------------------------------------43 圖2-27 SEM images of CdS microspheres (sample-CdS 3:2). The high magnification images of the microsphere reveal that a microsphere is constructed by several nanocrystals-------------------------------------------------------------------------------------44 圖2-28 SEM image of the as-prepared Ag2S nanoworms--------------------------------45 圖2-29 無水醋酸鋅之結構圖---------------------------------------------------------------47 圖2-30 醋酸鋅離子與金屬離子配位之示意圖------------------------------------------48 圖2-31 SEM images of the hydrothermally grown ZnO nanowire arrays on the inkjet-printed Zn acetate patterns-------------------------------------------------------------49 圖2-32 FESEM images of ZnO nanowires grown at 300 ◦C for (a) 1 h, (b) 3 h, and (c) 12 h-----------------------------------------------------------------------------------------------50 圖3-1 陽極氧化鋁模板製備流程圖--------------------------------------------------------55 圖3-2水熱法試片之製備流程圖------------------------------------------------------------56 圖4-1 操作電壓為80V之AAO模板之SEM圖---------------------------------------60 圖4-2 以0.01M氯化鋅及0.01M硫脲於12小時下所製備之硫化鋅粉末XRD圖----------------------------------------------------------------------------------------------------62 圖4-3 以氯化鋅及硫脲於180oC、反應時間12小時下所製備之硫化鋅粉末之 (a) (b)SEM圖及(c)EDS成分分析----------------------------------------------------------64 圖4-4 SEM images of as-prepared ZnS microspheres at 160 °C (a, b) 3 h; (c, d) 6 h ----------------------------------------------------------------------------------------------------65 圖4-5 Schematic illustrations of formation mechanism of ZnS hollows microspheres ----------------------------------------------------------------------------------------------------66 圖4-6 以0.01M氯化鋅及0.01M硫代乙醯胺於12小時下所製備之硫化鋅粉末XRD圖-------------------------------------------------------------------------------------------68 圖4-7 以0.01M氯化鋅及0.01M硫脲於180oC、反應時間12小時下所製備之硫化鋅粉末之(a) SEM圖及(b) EDS成分分析 (c) FIB圖---------------------------------70 圖4-8 以氯化鋅及硫脲於180oC、反應時間12小時下所製備之硫化鋅粉末之 (a) TEM圖及(b)diffraction pattern----------------------------------------------------------71 圖4-9 SEM images of as-prepared samples with Zn(Sal)2 at different temperatures for 6h(a and b)110 oC, (c and d)140 oC, (e and f)160 oC and (g and h)200 oC-------------72 圖4-10 Particle-to-particle attachment mechanism示意圖------------------------------73 圖4-11 以0.01M醋酸鋅及0.01M硫代乙醯胺於12小時下所製備之硫化鋅粉末之XRD圖---------------------------------------------------------------------------------------75 圖4-12 以0.01M醋酸鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之硫化鋅粉末之 (a) SEM圖 (b) EDS成分分析 (c) FIB圖--------------------76 圖4-13以0.01M醋酸鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之硫化鋅粉末之(a) TEM圖 (b) diffraction pattern-----------------------------------77 圖4-14 以0.01M氯化鋅及0.01M硫脲於180oC、反應時間12小時下所製備之ZnS/AAO試片SEM圖-----------------------------------------------------------------------79 圖4-15 以0.01M氯化鋅及0.01M硫脲於180oC、反應時間12小時下所製備之ZnS/AAO試片(a)TEM圖 (b) diffraction pattern (c)EDS成份-------------------------80 圖4-16以0.01M氯化鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之ZnS/AAO試片之SEM圖 (a) 10000倍 (b) 20000倍-----------------------------82 圖4-17以0.01M氯化鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之ZnS/AAO試片(a)TEM圖 (b) diffraction pattern-----------------------------------83 圖4-18以0.01M醋酸鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之ZnS/AAO試片之SEM圖--------------------------------------------------------------85 圖4-19以0.01M醋酸鋅及0.01M硫代乙醯胺於180oC、反應時間12小時下所製備之ZnS/AAO試片(a)TEM圖 (b) diffraction pattern-----------------------------------86 圖4-20 Cluster-to-cluster attachment mechanism示意圖--------------------------------87 圖4-21不同濃度之醋酸鋅、硫代乙醯胺於180oC、12小時下所製備之硫化鋅粉末之XRD圖------------------------------------------------------------------------------------89 圖4-22以0.02M醋酸鋅及0.02M硫代乙醯胺於180oC、反應時間12小時下所製備之粉末SEM圖(a) 20000倍 (b)50000倍-----------------------------------------------90 圖4-23以0.05M醋酸鋅及0.05M硫代乙醯胺於180oC、反應時間12小時下所製備之粉末SEM圖 (a) 20000倍 (b) 50000倍---------------------------------------------91 圖4-24以0.02M醋酸鋅及0.02M硫代乙醯胺於180oC、反應時間12小時下所製備之粉末 (a)TEM圖 (b) 球狀顆粒之diffraction pattern (c) 多邊形顆粒之diffraction pattern (d) 多邊形顆粒之HRTEM--------------------------------------------93 圖4-25以0.02M醋酸鋅及0.02M硫代乙醯胺於180oC、反應時間12小時下所製備之粉末 (a)TEM圖 (b) 多邊形顆粒之diffraction pattern (c) 球狀顆粒之diffraction pattern-------------------------------------------------------------------------------94 圖4-26以不同濃度醋酸鋅、硫代乙醯胺製備之ZnS粉末PL光譜----------------96 圖4-27以不同濃度醋酸鋅、硫代乙醯胺製備之ZnS粉末型態變化示意圖------97

    [1] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension:
    Synthesis and Properties of Nanowires and Nanotubes” Acc. Chem. Res. 32 435
    (1999).
    [2] Y. Wu, H. Yan, and P. Yang, “Inorganic Semiconductor Nanowires: Rational
    Growth, Assembly, and Novel Properties” Chem. Eur. J. 8 1260 (2002).
    [3] B.D. Terris, and T. Thomson, “Nanofabricated and self-assembled magnetic
    structures as data storage media” J. Phys. D: Appl. Phys. 38 R199 (2005).
    [4] P.V. Braun, P. Wiltzius, “Microporous materials - Electrochemically grown
    photonic crystals” Nature. 402 603 (1999).
    [5] G. Zhang, and J. Chen, “Synthesis and Application of La0.59Ca0.41CoO3
    Nanotubes Batteries, Fuel Cells, and Energy Conversion ” J. Electrochem.
    Soc. 152 A2069 (2005).
    [6] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of
    silicon photonic bandgap crystals” Nature. 414 289 (2001).
    [7] T. M. Chen, F. M. Pan, J. I. Hung, L. Chang, S. C. Wu, and C. F. Chen,“Amorphous
    Carbon Coated Silicon Nanotips Fabricated by MPCVD Using Anodic Aluminum
    Oxide as the Template”, J. Electrochem. Soc. 154 D215 (2007).
    [8] Huczko, “Template-based synthesis of nanomaterials” Appl. Phys. A. 70 365
    (2000).
    [9] C.R. Martin, “Membrane-Based Synthesis of Nanomaterials” Chem. Mater. 8 1739
    (1996).
    [10] G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode,
    Nature. 30 433 (1978).

    [11] G. E. Thompson, and G. C. Wood, “Porous anodic film formation on aluminium”
    Nature. 19 230 (1981).
    [12] S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General Notes
    and Theory”, in Surface treatment finishing of aluminum and its alloys, 2nd ed.,
    Finishing Publications Ltd., Teddington, Middlesex, UK, Vol. 1 Chapter6 pp.289
    (1987).
    [13] H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step
    Replication of Honeycomb Structures of Anodic Alumina” Science. 9 1466 (1995).
    [14] R. Inguanta, C. Sunseri, S. Piazza, “Photoelectrochemical Characterization of Cu2O
    Nanowire Arrays Electrodeposited into Anodic Alumina Membranes” Electrochem.
    Solid State Lett. 10 K63 (2007).
    [15] R. Inguanta, S. Piazza, and C. Sunseri, “Template electrosynthesis of CeO2
    Nanotubes Template electrosynthesis of CeO2 nanotubes” Nanotechnol. 18 485605
    (2007).
    [16] T. Kondo, M. Tanji, K. Nishio, and H. Masuda, “Surface-Enhanced Raman
    Scattering in Multilayered Au Nanoparticles in Anodic Porous Alumina Matrix”
    Electrochem. Solid State Lett. 9 C189 (2006).
    [17] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodicarrayof
    uniform ZnO nanorods by secondorder selfassembly” Appl. Phys. Lett. 84
    3376 (2004).
    [18] J. Xu and W. Ji, “Characterization of ZnS Nanoparticles Prepared by New Route”
    J. Mater. Sci. Lett. 18 115 (1999).
    [19] J. X. Ding , J. A. Zapien , W. W. Chen , Y. Lifshitz , S. T. Lee , and X. M. Meng ,
    “Lasing in ZnS nanowires grown on anodic aluminum oxide templates” Appl. Phys.
    Lett. 85 2361 (2004).

    [20] X. P. Shen , M. Han , J. M. Hong , Z. L. Xue , and Z. Xu , “Template-based CVD
    synthesis of ZnS nanotube arrays” Chem. Vapor. Depos. 11 250 (2005).
    [21] T. Y. Zhai , Z. J. Hu , Y. Ma , W. S. Yang , L. Y. Zhao , and J. N. Yao, “Synthesis of
    ordered ZnS nanotubes by MOCVD-template method” Mater. Chem. Phys. 100 281
    (2006).
    [22] X. J. Xu , G. T. Fei , W. H. Yu , X. W. Wang , L. Chen , L. D. Zhang, “Preparation
    and formation mechanism of ZnS semiconductor nanowires made by the
    electrochemical deposition method” Nanotechnol. 17 426 (2006).
    [23] G. X. Qian , K. F. Huo , J. J. Fu , and P. K. Chu , “Direct Growth of Quasi-Aligned
    Ultrafine ZnS Nanowire Arrays on Conducting Zinc Foils and Their Field Emission
    Properties” J. Nanosci. Nanotechnol. 9 3347 (2009).
    [24] G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode,
    “Nucleation and growth of porous anodic films on aluminium” Nature. 30 433
    (1978).
    [25] G. E. Thompson, and G. C. Wood, “Porous anodic film formation on aluminium”
    Nature. 19 230 (1981).
    [26] S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General
    Notes and Theory, in Surface treatment finishing of aluminum and its alloys, 2nd ed.,
    Finishing Publications Ltd” Teddington, Middlesex, UK. Vol. 1 Chapter6 p.289
    (1987).
    [27] Z. X. Su, G. Hahner, and W. Z. Zhou, “Equilibrium Morphology of Mixed
    Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative
    Humidity and Surfactants” Jourmal of Materials Chemistry. 18 5787 (2008).
    [28] V. P. Parkhutik, “Theoretical modelling of porous oxide growth on aluminium”
    Journal of Physics D: Applied Physics. 25 1258 (1992).

    [29] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings
    on aluminum” J. Electrochem. Soc. 100[9] 411 (1953).
    [30] D. Almawlawi, K. A. Bosnick, A.Osika, and M. Moskovits, “Fabrication of
    Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks”
    Adv. Mater. 12 1252 (2000).
    [31] H. Masuda, F. Hasegwa, and S. Ono, “Self‐Ordering of Cell Arrangement of Anodic
    Porous Alumina Formed in Sulfuric Acid Solution” J. Electrochem. Soc. 144 L127
    (1997).
    [32] W. Lee, R. Ji, U. Gosele, and K. Nielsch, “Fast fabrication of long-range ordered
    porous alumina membranes by hard anodization” Nat. Mater. 5 741 (2006).
    [33] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic
    porous alumina with large-size pores in phosphoric acid solution” Japanese Journal
    of Applied Physics. 37 (1998) L1340.
    [34] H. Masuda, and M. Sato, “Fabrication of Gold Nanodot Array Using Anodic
    Porous Alumina as an Evaporation Mask” Jpn. J. Appl. Phys. 35 126 (1996).
    [35] Y. Li , G. W. Meng , L. D. Zhang , and F. Phillipp, “Ordered semiconductor ZnO
    nanowire arrays and their photoluminescence properties” Appl. Phys. Lett. 76
    2011 (2000).
    [36] B. Das , and S. P. McGinnis, “Novel template-based semiconductor
    nanostructures and their applications” Appl. Phys. A. 71 681 (2000).
    [37] Z. Zhang , T. Shimizu , L. J. Chen , S. Senz , and U. Goesele, “Bottom-Imprint
    Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium
    Catalyst” Adv. Mater. 21 4701 (2009).
    [38] H. Yoon , K. Seo , N. Bagkar , J. In , J. Park , J. Kim , and B. Kim, “Vertical
    Epitaxial Co5Ge7 Nanowire and Nanobelt Arrays on a Thin Graphitic Layer for
    Flexible Field Emission Displays” Adv. Mater. 21 4979 (2009).

    [39] Z. Jin, R. Guo, C. Shi, and X. Huo, Fundamentals of Materials science, Tianjin
    University Press, Chapter 5 (2005).
    [40] Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X.D.Wang,
    Z.L.Wang, and R.J.Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts” Nat.
    Mater. 4 922 (2005).
    [41] L. P. Wang, S. G. Huang, and Y. J. Sun, “Low-temperature synthesis of hexagonal
    transition metal ion doped ZnS nanoparticles by a simple colloidal method” Applied
    Surface Science. 270 178 (2013).
    [42] J. Du, X. P. Yu, Y. Wu, and J. W. Di, “ZnS nanoparticles electrodeposited onto ITO
    electrode as a platform for fabrication of enzyme-based biosensors of glucose”
    Materials Science and Engineering C. 33 2031 (2013).
    [43] T. T. Q. Hoa, L. V. Vu, T. D. Canh, and N. N. Long, “Large magnetic‐field‐induced
    strains in Ni2MnGa single crystals” Journal of Physics: Conference Series. 187
    012081 (2009).
    [44] S. L. Liu, Z. Q. Wang, H. Liu, and Q. Q. Xu, “Hydrothermal synthesis and
    optical property of ZnS/CdS composites” J. Mater. Res. 28 21 (2013).
    [45] X. J. Wang, F. Q. Wan, K. Han, C. X. Chai, and K. Jiang, “Large-scale synthesis
    well-dispersed ZnS microspheres and their photoluminescence, photocatalysis
    properties” Materials Characterization. 59 1765 (2008).
    [46] D. F. Moore , Y. Ding , and Z. L. Wang, “Crystal Orientation-Ordered ZnS
    Nanowire Bundles” J. Am. Chem. Soc. 126 14372 (2004).
    [47] Y. Q. Li , J. X. Tang ,and H. Wang , J. A. Zapien , Y. Y. Shan , S. T. Lee,
    “Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS
    nanoribbons” Appl. Phys. Lett. 90 093127 (2007).
    [48] G. Z. Shen , Y. Bando , D. Golberg , and C. W. Zhou, “Heteroepitaxial Growth of
    Orientation-Ordered ZnS Nanowire Arrays” J. Phys. Chem. C.11 12299 (2008).

    [49] Z. G. Chen , L. Cheng , J. Zou , X. D. Yao , G. Q. Lu , and H. Cheng, “ZnS
    nanowire arrays on Si for field emitters” Nanotechnol. 21 065701 (2010).
    [50] S. Biswas , T. Ghoshal , S. Kar , S. Chakrabarti , and S. Chaudhuri, “ZnS Nanowire
    Arrays: Synthesis, Optical and Field Emission Properties” Cryst. Growth. Des. 8
    2171 (2008).
    [51] C. H. Jin, H. S. Kim, S. H. Park, S. Y. An, and C. M. Lee, “Structure and optical
    properties of one-dimensional ZnS nanostructures synthesized using a single
    evaporation process” Phys. Scr. T157 14043 (2013).
    [52] X. P. Shen, M. Han, J. M. Hong, Z. L. Xue, and Z. Xu, “Template-Based CVD
    Synthesis of ZnS Nanotube Arrays” Chem. Vap. Deposition. 11 250 (2005).
    [53] J. X. Ding , J. A. Zapien , W. W. Chen , Y. Lifshitz , S. T. Lee , and X. M. Meng,
    “Lasing in ZnS nanowires grown on anodic aluminum oxide templates” Appl. Phys.
    Lett. 85 2361 (2004).
    [54] H. Y. Sun , Y. L. Yu , X. H. Li , W. Li , F. Li , B. T. Liu , and X. Y. Zhang,
    “Controllable growth of electrodeposited single-crystal nanowire arrays: The
    examples of metal Ni and semiconductor ZnS” J. Cryst. Growth. 307 (2007) 472.
    [55] Hong-Ming Lin, 奈米材料合成技術, Department of Materials Engineering
    Tatung University.
    [56] R. I. Walton “Subcritical Solvothermal Synthesis of Condensed Inorganic materials”
    Chemical Society Reviews. 31 230 (2002). ,
    [57] A. Rabenau, Angewandte Chemie: International Editionin English. 24, (1985),
    1026-1040. “The Role of Hydrothermal Synthesis in Preparative Chemistry"
    [58] M. Salavati-Niasari, F. Davar, and M. Reza Loghman-Estarki, “Controllable
    synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous
    solution route at low temperatures and conversion to wurtzite ZnS nanorods via
    thermal decompose of precursor”Journal of Alloys and Compounds. 494 (2010) 199.

    [59] W. Yu, P. F. Fang, and S. J. Wang, “ZnS nanorod arrays synthesized by an
    aqua-solution hydrothermal process upon pulse-plating Zn nanocrystallines”Applied
    Surface Science. 255 5709 (2009).
    [60] Z. H. Ibupoto, K. L. Khun, X. J. Liu, and M. Willander, “Hydrothermal Synthesis of
    Nanoclusters of ZnS Comprised on Nanowires” Nanomaterials. 3 (2013) 564.
    [61] J. S. Lloyd, C. M. Fung, D. Deganello, R. J. Wang, T. G. G. Maffeis, S. P. Lau, and
    K. S. Teng, “Flexographic printing-assisted fabrication of ZnO nanowire
    devices” Nanotechnol. 24 195602 (2013).
    [62] S. Sarkar, and D. Basak, “A low temperature in situ facile technique to enhance
    ultraviolet emission of zinc oxide nanorods and its mechanistic insights” Chemical
    Physics Letters. 516 192 (2011).
    [63] Y. Wang, Y. H. Li, Z. Z. Zhou, X. H. Zu, and Y. L. Deng, “Evolution of the zinc
    compound nanostructures in zinc acetate single-source solution” J Nanopart Res. 13
    5193 (2011).
    [64] C. D. Bojorge, V. R. Kent, E. Teliz, H. R. Canepa, R. Henrıquez, H. Gomez, R. E.
    Marotti, and E. A. Dalchiele, “Zinc-oxide nanowires electrochemically grown onto
    sol–gel spin-coated seed layers” Phys. Status Solidi A. 208[7] 1662 (2011).
    [65] C. Te. Wu and J. J. Wu, “Room-temperature synthesis of hierarchical nanostructures
    on ZnO nanowire anodes for dye-sensitized solar cells” J. Mater. Chem. 21 13605
    (2011).
    [66] J.D. Patel, F. Mighria, A. Ajjia, and T. K. Chaudhurid, “Morphology and size control
    of lead sulphide nanoparticles produced using methanolic lead acetate trihydrate –
    thiourea complex via different precipitation techniques” Materials Chemistry and
    Physics. 132 747 (2012).
    [67] W. T. Wu, J. S. Chen and J. J. Wu, “Synthesis of Tungsten Oxide Powders Via
    Thiourea-Assisted Route: Tailoring from Hierarchical Microspheres to
    Mesoporously Structured Nanoparticles” J. Am. Ceram. Soc. 93[8] 2268 (2010).
    [68] S. Rengaraj, S. H. Jee, S. Venkataraj, Y. H. Kim, S. Vijayalakshmi, E. Repo, A.
    Koistinen, and M. Sillanpaa, “CdS Microspheres Composed of Nanocrystals and
    Their Photocatalytic Activity” Journal of Nanoscience and Nanotechnol. 11 1
    (2011).
    [69] R. M. Xing, S. H. Liu, and S. F. Tian, “Microwave-assisted hydrothermal synthesis
    of biocompatible silver sulfide nanoworms” Journal of Nanopart Res. 13 4847
    (2011).
    [70] J. Y. Kwon, S. J. Hong, H. B. Lee, J. Y. Yeo, S. S. Lee, and S. H. Ko, “Direct
    selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor
    on a heated substrate” Nanoscale Research Letters. 8 489 (2013).
    [71] C. C. Lin and Y. Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of
    zinc acetate dihydrate” Materials Chemistry and Physics. 113 334 (2009).
    [72] Y. D. Zhang, C. C. Pan, Y. G. Zhang, and W. W. He, “Self-template hydrothermal
    synthesis ZnS microspheres” Cryst. Res. Technol. 46 718 (2011).
    [73] M. Mohammadikish, F. Davar, M. R. Loghman-Estarki, and Z. Hamidi, “Synthesis
    and characterization of hierarchical ZnS architectures based nanoparticles in the
    presence of thioglycolic acid” Ceramics International. 39 3173 (2013).
    [74] G. H. Yue, P. X. Yan, D. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, and J. Z. Liu,
    “Hydrothermal synthesis of single-crystal ZnS nanowires” Appl. Phys. A. 84 409
    (2006).
    [75] H. Zhang, D. Yang, X. Ma, D. Que, “Some critical factors in the synthesis of CdS
    nanorods by hydrothermal process” Mater. Lett. 59 3037 (2005).
    [76] C.L. Yan, and D.F. Xue, “Conversion of ZnO nanorod arrays into ZnO/ZnS
    nanocable and ZnS nanotube arrays via and in situ chemistry strategy” The Journal
    of Physical Chemistry B. 110 25850 (2006).

    [77] Y. Liu, G. Xi, S. Chen, X. Zhang, Y. Zhu, and Y.T. Qian, “New ZnS/organic
    composite nanoribbons: characterization, thermal stability and photoluminescence”
    Nanotechnol. 18 285605 (2007).
    [78] D. A. Reddy, D. H. Kim, S. J. Rhee, B. W. Lee, and C. Liu, “Tunable blue –green-
    emitting wurtzite ZnS:Mg nanosheet-assembled hierarchical spheres for near-UV
    white LEDs” Nanoscale Research Letters. 9 20 (2014).

    下載圖示 校內:2015-02-14公開
    校外:2015-02-14公開
    QR CODE