簡易檢索 / 詳目顯示

研究生: 葉宏達
Yeh, Hung-ta
論文名稱: 具有非線性多變數系統之適應- H∞滑動模式控制器之研究與其在機械手臂上之應用
A Study on Nonlinear Multiple-Input Multiple-Output Adaptive- H∞ Sliding Mode Controller and Its Application on Robot Manipulators
指導教授: 黃正能
Huang, Cheng-neng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: H∞滑動模式控制器適應控制
外文關鍵詞: H∞ sliding mode control, adaptive control
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實際的非線性系統中,常含有參數不確定性、未模式化擾動及可能受到各種外擾影響,而造成控制性能下降,使得系統輸出響應不如預期。適應控制藉由參數調整器來自動調整控制參數,雖能克服系統含有參數不確定性的困擾,但無法排除外來干擾所帶來的不良影響。因為當系統受到外擾影響或回授訊號含有雜訊時,可能使參數調整器誤以為追蹤誤差變小,而停止控制參數的調整,導致閉迴路系統不穩定。
    在本篇論文中,我們將針對非線性多變數系統,設計一個含有滑動模式控制之適應- 控制器:利用滑動模式控制器來解決當系統具有模式不確定性或外界干擾之影響時,能有效的克服此問題。最後結合H控制器來提昇系統之追蹤響應與追蹤誤差及系統內部之強健性。
    最後,本文針對機械手臂操作系統,作為電腦模擬之控制對象,來驗證所設計之適應-H∞滑動模式控制器之可行性。經由模擬的結果顯示,在適當的控制參數選取下,系統能有良好之追蹤性能並且提高傳統適應控制之強健性。

    Since a practical nonlinear system often has uncertain parameters, unmodeled dynamics and external disturbances in it, the system performance is hard to be achieved by using the traditional controllers. Adaptive control theorem can overcome uncertain parameters of systems by using parameter adjuster, but it can’t reject the influence of external disturbance. Because when a system has disturbance or has feedback signals containing sensor noise, the parameter adjuster may mistake for that the tracking error was being diminished and stops adjusting the parameters, which may cause the closed loop system unstable.

    In this study, an adaptive-H∞ control law, which contains sliding mode control, is derived for the nonlinear multiple-input multiple-output systems based on the tracking properties of slide controller. In this study, to achieve the desired tracking performances, including minimizing the tracking errors and maintaining the robustness of the closed-loop system, the H∞ methodology is included in the proposed control design.

    A robot manipulator system is studied as example in this research to attest the feasibility of the proposed adaptive-H∞ sliding mode control design. The computer simulation results reveal that if the control parameters are properly chosen, the system has good tracking performance and increases the robustness of traditional adaptive controller.

    中文摘要………………………………………………………………I Abstract………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄………………………………………………………………VIII 第一章 緒論……………………………………………………………1 1.1 研究動機………………………………………………………1 1.2 文獻回顧.......................................................2 1.3 文章架構..........................................3 第二章 適應控制理論……………………………………………5 2.1 前言………………………………………………………5 2.2 適應控制系統………………………………………………5 2.2.1 自我調適控制器………………………………..………6 2.2.2 模式參考適應控制器……………………………………7 2.3 自我調適控制器與模式參考適應控制器之比較…………9 2.4 多變數適應控制系統之設計………….……………………10 第三章 H∞控制理論………………………………………………………16 3.1 前言……………………………………….…………………16 3.2 範數………………………………………………….….…16 3.2.1 何謂範數…………...………………………………………16 3.2.2 範數量度系統的大小………………………………………17 3.3 H∞控制理論基本概念……………………………………….17 3.4 變異漸進法………………………………………………….…18 3.4.1 擴增系統矩陣………………………………………..…...18 3.4.2 狀態回授控制器……………………………………..……..21 3.5 計算H 控制問題的程序…………………………….…….24 第四章 非線性多變數適應-H∞滑動模式控制器之設計…………25 4.1 系統描述………………………….……………………………25 4.2 適應-H∞滑動模式控制器之設計……………………………28 4.3 設計流程………………………………………………………34 4.4 探討控制器參數之選取……..………………………………36 第五章 電腦模擬……………………………………………………40 5.1 前言……..……………………………………………………40 5.2 系統描述………………………………………………………40 第六章 結論……………………………………………...................65 參考文獻……………………………………………………………67

    [1] B.S. Chen, Y.C. Chang, T.C. Lee, “Adaptive Control in Robotic Systems with H Tracking Performance”, Automatic, Vol.33, No.2, pp.227-234, 1997.

    [2] C.E. Rohrs, L. Valavani, M. Athans and G. Stein, “Robustness of Continuous Time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics”, IEEE Transactions on Automatic Control, Vol.30, No.9, pp.881-889, 1985.

    [3] C.N. Hwang, “Formulation of H2 and H Optimal Control Problems – A Variational Approach”, Journal of the Chinese Institute of Engineering’s, Vol. 16, No. 6, pp. 853-866, 1993.

    [4] C.N. Hwang, “Tracking of controllers for robot manipulators”, Master
    Dissertation, Michigan State University, 1986.

    [5] C.N. Hwang, “非線性系統之最佳綜合控制設計”, 國科會專題研究報告, NSC 81-0404-E-006-007, July 1992.

    [6] C.J. Chien, K.C. Sun, A.C. Wu and L.C. Fu, “A Robust MRAC Using Variable Structure Design for Multivariable Plants”, Automatica, Vol.32, No.6, pp.833-848, 1996.

    [7] H.K. Khalil, “Adaptive output feedback control of nonlinear systems represented by input-output models”, IEEE Trans. Automat. Contr., Vol.41, pp.177-188, 1996.

    [8] I. Kanellakopoulos, P.V. Kokotovic and A.S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems”, IEEE Trans. Automat. Contr., Vol.36, pp.1241-1253, Nov. 1991.

    [9] J.C. Doyle, K. Glover , P.P. Khargonekar and B.A. Francis, “State-Space Solutions to Standard H2 and H Control Problems”, IEEE Transactions on Automatic Control, Vol. 34,No.8, pp.831-847, 1989.

    [10] J.J. Slotine and W. Li, “Applied Nonlinear Control”, Prentice Hall, Englewood Cliffs, NJ, 1991.

    [11] J.J. Slotine, “Sliding Controller Design for Nonlinear Systems”, Int. J.Control, Vol.40, No.2, pp.421-434, 1984.

    [12] J.J. Slotine and S.S. Sastry, “Tracking Control of Nonlinear Systems
    Using Sliding Surfaces, with Application to Robot Manipulators”, Int.
    J. Control, Vol. 38, No. 2,pp.465-492, 1983.

    [13] K. Ogata, “Modern Control Engineering”, Fourth Edition, Prentice Hall, 2002.

    [14] L. Hsu, “Variable Structure Model Reference Adaptive Control (VS-MRAC) Using only Input Output Measurements: the General Case”, IEEE Transactions on Automatic Control, Vol.35, No.11, pp.1238-1243, 1990.

    [15] L.C. Fu and T.L. Liao, “Globally Stable Robust Tracking of Nonlinear
    Systems Using Variable Structure Control and with an Application to
    A Robotic Manipulator”, IEEE Transactions on Automatic Control, vol.35, pp.1345-1351, 1990

    [16] T.L. Liao, L.C. Fu and C.F. Hsu,“Adaptive Robust Tracking of Nonlinear Systems and with Application to a Robotic Manipulator”, Systems and Control Letters, Vol.15, pp.339-348, 1990.

    [17] Y.C. Chang, “Robust Tracking Control for Nonlinear MIMO Systems via Fuzzy Approaches,” Automatica, Vol.36, pp.1535-1545, 2000.

    [18] Y.C. Chang, “An Adaptive H Tracking Control for a Class of Nonlinear Multiple-Input-Multiple-Output (MIMO) Systems”, IEEE Transactions on Automatic Control, Vol.46, No.9, pp.1432-1437, 2001.

    [19] Zames, G., "On H∞ Optimal Sensitivity Theory for SISO Feedback Systems," IEEE Transactions on Automatic Control, Vol.AC-29, No.1, pp.9-16, 1984.

    [20] Z.P. Jiang and L. Praly, “Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties”, Automatica, Vol.34, pp.825-840, 1998.

    [21] 陳冠良、黃正能,“狀態空間H控制器之迴路整型及其在船上的應用”,國立成功大學造船暨船舶機械工程研究所碩士論文,1997。

    [22] 楊憲東、葉芳柏,“線性與非線性H控制理論”,全華科技圖書股份公司,1997。

    [23] 韓曾晉,“適應控制系統”,科技圖書股份有限公司,2002。

    下載圖示 校內:2011-01-16公開
    校外:2013-01-16公開
    QR CODE