| 研究生: |
劉宜旻 Liu, I-Ming |
|---|---|
| 論文名稱: |
兒童氣喘與第一型糖尿病發生風險之流行病學研究:衛生假說之驗證 An epidemiology study of asthma and type I diabetes mellitus in children: The falsification of hygiene hypothesis |
| 指導教授: |
李中一
Li, Chung-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 兒童氣喘 、第一型糖尿病 、衛生假說 、世代研究 、病例對照研究 |
| 外文關鍵詞: | Childhood Asthma, Type 1 Diabetes Mellitus, hygiene hypothesis, Cohort study, Case-control study |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:
氣喘與第一型糖尿病的發生,皆是基因與環境因子交互作用所致的結果,隨著世界各地的氣喘及第一型糖尿病之發生率皆呈現上升趨勢,有越來越多的研究探討環境中各種因子是否為導致發生率上升的原因。其中包括了衛生假說(hygiene hypothesis),其理論基礎在於:當暴露於環境微生物中,人體內的共生菌會與其作用,此時能夠刺激免疫系統,促進人體免疫系統的成熟,並且有助於第一型與第二型輔助性T細胞的發展。然而,並非所有過去的研究都支持衛生假說;為此,本研究以兒童氣喘及第一型糖尿病與自體免疫有關之疾病為對象,針對衛生假說再次進行研究驗證。
目的:
本研究將探討台灣的孩童居住地區畜牧場密度、嬰幼兒期使用抗生素的次數,以及搬家頻率等三個環境因素與氣喘及第一型糖尿病(僅前兩者環境因素)發生風險間之相關性。
方法:
第一部分(氣喘)採世代追蹤研究,使用全民健康保險資料之2000年百萬人承保抽樣歸人檔,此部分的出生世代將被定義為:出生日期介於1998年1月1日與2000年12月31日之間者,暴露期間界定為出生後的四年內(零歲至滿三歲),追蹤時間為滿三歲日至2013年12月31日,排除條件為:滿三歲前死亡、退出全民健康保險者,或已發生氣喘者。本研究藉由全民健康保險資料之綜合就醫地來推估樣本居住地區,並據此,來進行樣本居住地畜牧場密度與搬家頻率的評估,本研究也藉由全民健康保險資料之門診處方醫令明細檔,和住院醫療費用醫令清單明細檔中,所有種類的抗生素(ATC code: J01),來評估研究對象嬰幼兒期使用抗生素的頻率。氣喘的界定是根據國際疾病分類臨床修正第九版(International Classification of Disease, Ninth Revision, Clinical Modification,ICD-9-CM)之定義,若主次診斷診斷碼為“493.X”或”493.XX”。此部分分析將以Cox proportional hazard model,在控制潛在干擾因子後,估計前述衛生假說相關因子與氣喘發生風險之風險對比值(adjusted hazard ratio, aHR)及其95%信賴區間(Confidence Interval, CI)。
第二部分(第一型糖尿病)採病例對照研究法,使用2003-2011年全人口糖尿病人資料,病例組為2003-2011年間於重大傷病檔中診斷為250.x1 or 250.x3,且重大傷病登錄年齡在6歲以下兒童。排除條件為第一型糖尿病登錄前(回溯至1997/1/1)沒有第一型糖尿病病史者。對照組為來源為健保承保檔,經匹配病例組年齡、性別、與登錄年代後,以簡單不重複的隨機選取之非第一型糖尿病兒童(病例/對照 1/4),病例組與對照組個案將回溯至出生,檢視其0-6歲期間居住地畜牧場密度與搬家的暴露情形。此部份分析將採用條件式邏輯斯迴歸分析估計勝算比及其95%信賴區間。
結果:
本研究第一部分最後納入研究分析之個案為28,516名兒童,追蹤至2013年12月31日止,平均追蹤人年數為13.09人年,總追蹤人年數為373526.211人年,追蹤期間發生氣喘總人數為5,545人,在調整潛在干擾因子後發現:兒童出生後4年內皆居住於農牧場密度較高地區,以及使用抗生素的頻率多寡都與發生氣喘的風險無顯著相關,校正風險對比值分別為0.96(95% CI: 0.83-1.14),與0.98(95% CI: 0.87-1.10)。不過,本研究發現:相較於兒童出生後4年內未搬家者,搬家次數達3次之兒童其罹患氣喘的風險顯著高出23%(aHR=1.23, 95% CI: 1.06-1.43),且呈現顯著劑量反應關係(trend test P <0.001)。
本研究第二部分共納入了443名罹患第一型糖尿病之兒童為病例組個案,以及1,772名未罹患第一型糖尿病之兒童為對照組個案,在調整潛在干擾因子後,兒童居住於農牧場密度較高的地區,與搬家次數都與6歲以前發生第一型糖尿病之風險無顯著相關,不過兒童居住於較高農牧場密度地區,傾向與發生第一型糖尿病的風險有正相關性,校正勝算比為1.05(95% CI: 0.82-1.34),但並沒有達到顯著統計上的意義,而在搬家次數方面,若兒童搬家次數越多,也傾向與第一型糖尿病之發生風險間有正相關性,校正勝算比為1.14(95% CI: 0.87-1.48)、1.32(95% CI: 0.98-1.79)、與1.22(95% CI: 0.82-1.81),但也沒有達到統計上的顯著意義。
結論:
本研究第一部分發現兒童的搬家次數越多,其罹患氣喘之風險越高,呈現顯著劑量反應關係,但抗生素使用與農場密度則是與氣喘發生無顯著相關。另外,農牧場密度與搬家頻率則是與第一型糖尿病發生風險間無顯著的相關。本研究的數據並未支持衛生假說。
SUMMARY
Asthma and Type 1 Diabetes Mellitus (T1DM) have been considered to result from the interaction between human genes and environment exposure. When the increasing incidence of asthma and T1DM worldwide, many of research considered certain environment factors as potential causes of both conditions. The hygiene hypothesis is among the major hypotheses. The theoretical basis of the hygiene hypothesis is that when exposed to environmental microorganisms, the symbiotic bacteria in the human body will interact with it. As a result, it can stimulate the immune system, promote the maturation of the human immune system, and help the type 1 and type 2 helper cells development. However, not all past study findings supported the hygiene hypothesis. For this reason, this study puts a foucus on children's asthma and type 1 diabetes, both are autoimmunity related diseases, and attempts to falsify the hygiene hypothesis. Our study firstly aimed to assess the associations of farm density of living area, number of antibiotic prescriptions, and moving frequency in the first 4 years of life with risk of asthma in Taiwan’s child population. Data were retrieved from the Longitudinal Health Insurance Database 2000 (LHID 2000). The birth cohort included a sample of live births from 1998 to 2000 and the environmental exposure was assessed for the first 4 years of life. This part included 28,516 children, all study subjects were then followed to December 31, 2013. The mean follow-up time was 13.09 years. The total follow-up time was 373526.211 person-years. During the follow-up, 5,546 children were diagniosed to have asthma. According to Cox regression model after adjustment for potential confounders, we found that higher farm density had an adjusted hazard ratio (aHR) of 0.96 (95% CI: 0.83-1.14). Antibiotic exposure more than four times was associated with an aHR at 0.98 (95% CI: 0.87-1.10). A significant association between moving for three times and asthma with an aHR at 1.23 (95% CI: 1.06-1.43); and the relationship between moving frequency and asthma showed a linear trend ( P <0.001), indicating a significant dose-response relationship. The second aims of ours study was to assess the associations of farm density of living areas and moving frequency with risk of T1DM. This was a case-control design. Data were retrieved from Diabetes Mellitus Health Database and Registry for Catastrophic Illness Patients. Children with a diagnosis of T1DM between 2003 and 2011 under six years old were selected as the T1DM cases and the non-T1DM controls were randomly selected from the general population by matching cases on year of T1DM registration, age and sex, with a case/control ratio of 1/4. We finally included 443 cases with T1DM and 1,772 matched controls. According to conditional logistic regression analysis after adjustment for potential confounders, we found that higher farm density was associated with an adjusted odds (aOR) of 1.05 (95% CI: 0.82-1.34). Moving frequency more than three times was associated with an aOR of 1.22 (95% CI: 0.82-1.81). In conclusion, despite potential for exposure misclassification and incomplete adjustment for potential confounders, our study generally provides no support for the hygiene hypothesis.
Ahmadizar, F. Vijverberg SJH, Arets HGM, et al. Early life antibiotic use and the risk of asthma and asthma exacerbations in children. Pediatr Allergy Immunol. 2017;28(5):430-437.
Algert CS, McElduff A, Morris JM, Roberts CL. Perinatal risk factors for early onset of Type 1 diabetes in a 2000-2005 birth cohort. Diabet Med. 2009;26(12):1193-1197.
Almqvist C, Wettermark B, Hedlin G, Ye W, Lundholm C. Antibiotics and asthma medication in a large register-based cohort study-confounding, cause and effect. Clin Exp Allergy. 2011;42(1):104-111.
Bach, JF. Six questions about the hygiene hypothesis. Cell Immunol. 2005;233(2):158-161.
Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018;18(2):105-120.
Bao Y, Chen Z, Liu E, Xiang L, Zhao D, Hong J. Risk factors in preschool children for predicting asthma during the preschool age and the early school age: a systematic review and meta-analysis. Curr Allergy Asthma Rep. 2017;17(12):85.
Bell RA, Mayer-Davis EJ, Beyer JW, et al. Diabetes in non-hispanic white youth prevalence, incidence, and clinical characteristics: the
search for diabetes in youth study. Diabetes Care. 2009;32(Suppl 2):S102–S111.
Bernardes ET, Arrieta MC. Hygiene hypothesis in asthma development: is hygiene to blame? Arch Med Res. 2017;48(8):717-726.
Bonifacio E, Pflüger M, Marienfeld S, Winkler C, Hummel M, Ziegler AG. Maternal type 1 diabetes reduces the risk of islet autoantibodies: relationships with birthweight and maternal Hba(1c). Diabetologia. 2008; 51(7):1245-1252.
Borkar VV, Verma S, Bhalla AK. Low levels of vitamin d in North Indian children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2010;11(5):345-350.
Borschuk AP, Everhart RS. Health disparities among youth with type 1 diabetes: a systematic review of the current literature. Fam Syst Health. 2015;33(3):297-313.
Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172(6):639-648.
Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ. The beneficial effect of farm milk consumption on asthma, allergies, and infections: from meta-analysis of evidence to clinical trial. J Allergy Clin Immunol Pract. 2020;8(3):878-889.
Brunekreef B, Von Mutius E, Wong G, et al. Exposure to cats and dogs, and symptoms of asthma, rhinoconjunctivitis, and eczema. Epidemiology. 2012;23(5):742-750.
Bruno G, Spadea T, Picarielloo R, et al. Early life socioeconomic indicators and risk of type 1 diabetes in children and young adults. J Pediatr. 2013;162(3):600-605.
Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental Risk Factors and Type 1 Diabetes: Past, Present, and Future. Can J Diabetes. 2016;40(6):586-593.
Cardwell CR, Carson DJ, Yarnell J, Shields MD, Patterson CC. Atopy, home environment and the risk of childhood-onset type 1 diabetes:a population-based case–control study. Pediatr Diabetes. 2008;9(3 Pt 1):191-196.
Cardwell CR, Svensson J, Waldhoer T, et al. Interbirth interval is associated with childhood type 1 diabetes risk. Diabetes. 2012;61(3):702-707.
Carter JH, Woolcott CG, Liu L, Kuhle S. Birth weight for gestational age and the risk of asthma in childhood and adolescence: a retrospective cohort study. Arch Dis Child. 2019;104(2):179-183.
Crow Y, Alberti K, Parkin J. Insulin dependent diabetes in childhood and material deprivation in Northern England,1977-86. BMJ. 1991;303(6795):158-160.
Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. BMJ. 2004;328(7442):750-754.
Eisenbarth GS. Genetic counseling for autoimmune type 1 diabetes. In: Lebovitz HE, eds. Therapy for diabetes mellitus and related disorders. 4th ed. American Diabetes Association. 2004;8-19.
Elizabeth J, Mayer D, Lawrence JM, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017; 376(3):1419-1429.
Fall T, Lundholm C, Örtqvist AK, et al. Early exposure to dogs and farm animals and the risk of childhood asthma. JAMA Pediatr. 2015;169(11):e153219.
Faresjö AO, Ludvigsson J. Pet exposure in the family during pregnancy and risk for type 1 diabetes – the prospective ABIS-study. Pediatr Diabetes. 2018;19(7):1206-1210.
Fishman E, Crawford G, DeVries A, et al. Association between early-childhood antibiotic exposure and subsequent asthma in the US medicaid population. Ann Allergy Asthma Immunol. 2019;123(2):186-192.
Gale EAM. A missing link in the hygiene hypothesis? Diabetologia. 2002;45(4):588-594.
Genuneit J. Exposure to farming environments in childhood and asthma and wheeze in rural populations: a systematic review with meta-analysis. Pediatr Allergy Immunol. 2012;23(6):509-518.
Gerasimidi VA, Kordonouri O, Witsch M, et al. Seasonality at the clinical onset of type 1 diabetes-lessons from the SWEET database. Pediatr Diabetes. 2016;17(Suppl 23):32-37.
Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5(1):82-91.
Goldacre RR. Associations between birthweight, gestational age at birth and subsequent type 1 diabetes in children under 12: a retrospective cohort study in England, 1998-2012. Diabetologia. 2018;61(3):616-625.
Gortmaker SL, Walker DK, Jacobs FH, Ross HR. Parental smoking and the risk of childhood asthma. Am J Public Health. 1982;72(6):574-579.
Greer R, Rogers M, Bowling F, et al. Australian children and adolescents with type 1 diabetes have low vitamin D levels. Med J Aust. 2007;187(1):59-60.
Gülden E. Lifestyle factors affecting the gut microbiota’s relationship with type 1 diabetes. Curr Diab Rep. 2018;18(11):111-120.
Halenius A, Hengel H. Human cytomegalovirus and autoimmune disease. Biomed Res Int. 2014;2014:472978.
Harder T, Roepke K, Diller N, Stechling Y, Dudenhausen JW, Plagemann A. Birth weight, early weight gain, and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am J Epidemiol. 2009;169(12):1428-1436.
Hathout EH, Beeson WL, Ischander M, Rao R, Mace JW. Air pollution and type 1 diabetes in children. Pediatr Diabetes. 2006;7(2):81-87.
Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes. 2002;3(4):184-188.
Heikkinen SMM, Pitkäniemi JM, Kilpeläinen ML, Markku JK. Does farm environment protect against type 1 diabetes mellitus. Diab Vasc Dis Res. 2013;10(4):375-377.
Herman T, Dekker d , Agnes MM, Voort Sv, Johan C, Reiss IK, et al. Tobacco smoke exposure, airway resistance, and asthma in school-age children the generation r study. Chest. 2015;148(3):607-617.
Herrath VM. Can we learn from viruses how to prevent type 1 diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies. Diabetes. 2009;58(1):2-11.
Hidayat K, Zou SY, Shi BM. The influence of maternal body mass index, maternal diabetes mellitus, and maternal smoking during pregnancy on the risk of childhood-onset type 1 diabetes mellitus in the offspring: systematic review and meta-analysis of observational studies. Obes Rev. 2019;20(8):1106-1120.
Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat Med. 2012 4;18(5):726-735.
Hughes CH, Baumer JH. Moving house: a risk factor for the development of childhood asthma? BMJ. 1995;311(7012):1069-1070.
Hutchings HA, Evans A, Barnes P, et al. Residential moving and preventable hospitalizations. Pediatrics. 2016;138(1): e20152836.
International Diabetes Federation (IDF), Diabetes in Taiwan. Available online: https://www.idf.org/our-network/regions-members/western-pacific/members/114- taiwan.html(Access on July 10,2018)
Jackson KM, Nazar AM. Breastfeeding, the immune response, and long-term health. J Am Osteopath Assoc. 2006;106(4):203-207.
Jiang YD, Chang CH, Tai TY, Chen JF, Chuang LM. Incidence and prevalence rates of diabetes mellitus in Taiwan: analysis of the 2000-2009 nationwide health insurance database. J Formos Med Assoc. 2012;111(11):599-604.
Jones RCM, Hughes CR, Wright D, Baumer JH. Early house moves, indoor air, heating methods and asthma. Respir Med. 1999;93(12):919-922.
Jung CR, Chen WT, Tang YH, Hwang BF. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J Allergy Clin Immunol. 2019;143(6):2254-2262.
Khalkhali HR, Oshnouei S, Salarilak S, Rahimi RM, Karamyar M, Khashabi J. Effects of antibiotic consumption on children 2-8 years of age developing asthma. Epidemiol Health. 2014;36:e2014006.
Kim A, Lim G, Inbo O, Kim Y, Lee T, Lee J. Perinatal factors and the development of childhood asthma. Ann Allergy Asthma Immunol. 2018;120(3):292-299.
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12(3):154-167.
Kostopoulou E, Papachatzi E, Skiadopoulos S, et al. Seasonal variation and epidemiological parameters in children from Greece with type 1 diabetes mellitus (T1DM). Pediatr Res. 2020;91:530-538.
Lam HCY, Hajat S, Chan EYY, Goggins WB. Different sensitivities to ambient temperature between first- and re-admission childhood asthma cases in Hong Kong -a time series study. Environ Res. 2019;170:487-492.
Lee HY, Lu CL, Chen HF, Su HF, Li CY. Perinatal and childhood risk factors for early-onset type 1 diabetes: a population-based case-control study in Taiwan. Eur J Public Health. 2015;25(6):1024-1029.
Lee SY. Can the use of antibiotics alter the susceptibility to allergic diseases? Allergy Asthma Immunol Res. 2018;10(5):425-427.
LeRoith D, Taylor SI, Olefsky JM, et al. Diabetes mellitus-a fundamental and clinical text. 2nd ed. Philadelphia: Lippincott Williams & Wilkins. 2000;347-363.
Liese AD, Puett RC, Lamichhane AP, et al. Neighborhood level risk factors for type 1 diabetes in youth: the SEARCH case-control study. Int J Health Geogr. 2012;11:1-9.
Littorin B, Blom P, Scholin A, et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: Results from the nationwide diabetes incidence study in Sweden. Diabetologia. 2006;49(12):2847-2852.
Lu CL, Shen HN, Chen HF, Li CY. Epidemiology of childhood type 1 diabetes in Taiwan,2003 to 2008. Diabet. Med. 2014;31(6):666-673.
Lu Y , Lin S, Lawrence WR, et al. Evidence from SINPHONIE project: Impact of home environmental exposures on respiratory health among school-age children in Romania. Sci Total Environ. 2018;621:75-84.
Magnus MC, Tapia G, Olsen SF, et al. Parental smoking and risk of childhood-onset type 1 diabetes. Epidemiology. 2018;29(6):848-856.
Mannino DM, Mott J, Ferdinands JM, et al. Boys with high body masses have an increased risk of developing asthma: findings from the national longitudinal survey of youth. Int J Obes (Lond). 2006;30(1):6-13.
Marjamäki L, Niinistö S, Kenward M, et al. Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia. 2010;53(8):1599-1607.
Marra F, Marra CA, Richardson K, et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics. 2009;123(3):1003-1010.
Mebrahtu TF, Feltbower RG, Greenwood DC, Parslow RC. Birth weight and childhood wheezing disorders: a systematic review and meta-analysis. J Epidemiol Community Health. 2015;69(5):500-508.
Mejía LME, Calderón dl, Barca AM. Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients. 2015;7(11):9171-9184.
Metsälä J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy. 2015;45(1):137-145.
Michele MG, Annalisa A, Giuseppe P, et al. Risk factors for asthma. Ital J Pediatr. 2014;40(Suppl 1):A77.
Mikkelsen KH, Knop FK, Vilsbøll T, Frost M, Hallas J, Potteg A. Use of antibiotics in childhood and risk of type 1 diabetes: a population-based case–control study. Diabet. Med. 2017;34(2):272-277.
Miller LJ, Willis JA, Pearce J, Barnett R, Darlow BA, Scott RS. Urban-rural variation in childhood type 1 diabetes incidence in Canterbury, New Zealand, 1980-2004. Health Place. 2011;17(1):248-256.
Murk W, Risnes KR, Bracken MB. Prenatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics. 2011;127(6):1125-1138.
Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8(19):226-238.
Orton S, Jones LL, Cooper S, Lewis S, Coleman T. Predictors of children’s secondhand smoke exposure at home: a systematic review and narrative synthesis of the evidence. PLoS One. 2014;9(11):e112690.
Örtqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut. 2018;68(2):218-225.
Örtqvist AK, Lundholm C, Kieler H, et al. Antibiotics in fetal and early life and subsequent childhood asthma: nationwide population based study with sibling analysis. BMJ. 2014;349:g6979.
Pak CY, Mcarthur RG, Eun HM, Yoon JW. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet. 1998;2(8601):1-4.
Parslow RC, McKinney PA, Law GR, Bodansky HJ. Population mixing and childhood diabetes. Int J Epidemiol. 2001;30(5):533-538.
Parsons MA, Jeremy B, Ambikaipakan S. Association of living in a farming environment with asthma incidence in Canadian children. J Asthma. 2017;54(3):239-249.
Patelarou E, Girvalaki C, Brokalaki H, et al. Current evidence on the associations of breastfeeding, infant formula, and cow’s milk introduction with type 1 diabetes mellitus: a systematic review. Nutr Rev. 2012;70(9):509-519.
Penders J, Kummeling I, Thijs C. Infant antibiotic use and wheeze and asthma risk: a systematic review and meta-analysis. Eur Respir J. 2011;38(2):295-302.
Pitter G, Ludvigsson JF, Romor P, et al. Antibiotic exposure in the first year of life and later treated asthma, a population based birth cohort study of 143,000 children. Eur J Epidemiol. 2016;31(1):85-94.
Pociot F, McDermott MF. Genetics of type 1 diabetes mellitus. Genes Immun. 2002;3(5):235-249.
Radon K, Windstetter D, Solfrank S, et al. Exposure to farming environments in early life and type 1 diabetes: a case-control study. Diabetes. 2005;54(11):3212-3216.
Rennie DC, Karunanayake CP, Chen Y, et al. Early farm residency and prevalence of asthma and hay fever in adults. J Asthma. 2015;53(1):2-10.
Robertson CC, Rich SS. Genetics of type 1 diabetes. Curr Opin Genet Dev. 2018;50:7-16.
Salazar CR, Hartert TV. Prenatal exposures and the development of childhood wheezing illnesses. Curr Opin Allergy Clin Immunol. 2017;17(2):110-115.
Siemiatycki J, Colle E, Campbell S, Dewar R, Aubert D, Belmonte MM. Incidence of IDDM in Montreal by ethnic group and by social class and comparisons with ethnic groups living elsewhere. Diabetes. 1988;37(8):1096-1102.
Soltesz G, Jeges S, Dahlquist G, et al. Nongenetic risk determinants for type-I (insulin-dependent) diabetes-mellitus in childhood. Acta Paediatr. 1994;83(7):730-735.
Soneja S, Jiang C, Fisher J, Upperman CR, Mitchell C, Sapkota A. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A. Environ Health. 2016;15(1):57-64.
Sonnenschein VA, Arends LR, Jongste JC, et al. Preterm birth, infant weight gain, and childhood asthma risk: a meta-analysis of 147,000 European children. J Allergy Clin Immunol. 2014;133(5):1317-1329.
Steck A, Rewers M. Genetics of type 1 diabetes mellitus. Clin Chem. 2011;57(2):179-185.
Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259-1260.
Su WL, Lu CL, Martini S, Hsu YH, Li CY. A population-based study on the prevalence of gestational diabetes mellitus in association with temperature in Taiwan. Sci Total Environ. 2020;714:136747.
Svoren BM, Volkening LK, Wood JR, Laffel LMB. Significant vitamin D deficiency in youth with type 1 diabetes mellitus. J Pediatr. 2009;154(1):132-134.
Takata N, Tanaka K, Nagata C, Arakawa M, Miyake Y. Preterm birth is associated with higher prevalence of wheeze and asthma in a selected population of Japanese children aged three years. Allergol Immunopathol (Madr). 2019;47(5):425-430.
Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713-722.
Tapia G, K Størdal, Marild K, et al. Antibiotics, acetaminophen and infections during prenatal and early life in relation to type 1 diabetes. Int J Epidemiol. 2018;47(5):1538-1548.
Tilburg BE, Arrieta MC. Hygiene hypothesis in asthma development: is hygiene to blame. Arch Med Res. 2017;48(8):717-726.
Timm S, Frydenberg M, Janson C, et al. The urban-rural gradient in asthma: a population-based study in northern europe. Int J Environ Res Public Health. 2015;13(1):E93.
Thorsen SU, Mårild K, Olsen SF, et al. Lack of association between maternal or neonatal vitamin d status and risk of childhood type 1 diabetes: a Scandinavian case-cohort study. Am J Epidemiol. 2018;187(6):1174-1181.
Uusitalo U, Lee HS, Andren Aronsson C, et al. Early infant diet and islet autoimmunity in the TEDDY study. Diabetes Care. 2018;41(3):522-530.
Uusitalo U, Liu X, Yang J, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170(1):20-28.
Vargas C, Bustos P, Diaz PV, Amigo H, Rona RJ. Childhood environment and atopic conditions, with emphasis on asthma in a Chilean agricultural area. J Asthma. 2008;45(1):73-78.
Virk J, Li J, Vestergaard M, Obel C, Lu M, Olsen J. Early life disease programming during the preconception and prenatal period: making the link between stressful life events and type-1 diabetes. PLoS ONE. 2010;5(7): e11523.
Virtanen SM, Nevalainen J, Kronberg-KC, et al. Food consumption and advanced β cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr. 2012;95(2):471-478.
Virtanen SM., Takkinen HM, Nwaru BI, et al. Microbial exposure in infancy and subsequent appearance of type 1 diabetes mellitus–associated autoantibodies a cohort study. JAMA Pediatr. 2014;168(8):755-763.
Waernbaum I, Dahlquist G, Lind T. Perinatal risk factors for type 1 diabetes revisited: a population-based register study. Diabetologia. 2019;62(7):1173-1184.
Wang JY, Liu LF, Chen CY, Huang YW, Hsiung CA, Tsai HJ. Acetaminophen and/or antibiotic use in early life and the development of childhood allergic diseases. Int J Epidemiol. 2013;42(4):1087-1099.
Wei JN, Li HY, Chang CH, et al. Birth weight and type 1 diabetes among schoolchildren in Taiwan--a population-based case-controlled study. Diabetes Res Clin Pract. 2006;74(3):309-315.
Weinmayr G, Forastiere F, Büchele G, et al. Overweight/obesity and respiratory and allergic disease in children: international study of asthma and allergies in childhood (ISAAC) phase two. PLoS One. 2014;9(12):e113996.
Wernroth ML, Svennblad B, Fall K, Fang F, Almqvist C, Fall T. Dog Exposure During the First Year of Life and Type 1 Diabetes in Childhood. JAMA Pediatr. 2017;171(7):663-669.
Wickens K, Barry D, Friezema A, et al. Obesity and asthma in 11-12 year old New Zealand children in 1989 and 2000. Thorax. 2005;60(1):7-12.
Xu XF, Li YJ, Sheng YJ, Liu JL, Tang LF, Chen ZM. Effect of low birth weight on childhood asthma: a meta-analysis. BMC Pediatrics. 2014;14(1):275.
Xu Z, Crooks JL, Davies JM, Khan AF, Hu W, Tong S. The association between ambient temperature and childhood asthma: a systematic review. Int J Biometeorol. 2018;62(3):471-481.
Yeh KW, Chang CJ, Huang JL. The association of seasonal variations of asthma hospitalization with air pollution among children in Taiwan. Asian Pac J Allergy Immunol. 2011;29(1):34-41.
Zhang D, Cao L, Wang Z, Wang Z. Dietary meat intake and risk of asthma in children: evidence from a meta-analysis. Medicine (Baltimore). 2020;99(1):e18235.
古鯉榕、李佳純、李中一。台灣「醫療利用歸人檔資料庫」之建置介紹。健康科技期刊2018專刊2018;11-23。
徐世達。兒童氣喘照護新發展從胎兒期開始。台灣氣喘衛教學會會刊2013;30:12-19。
財政部財政資訊專區. 綜合所得稅申報核定統計專冊. Retrieved from http://www.fia.gov.tw/ct.asp?xItem=1601&ctNode=668&mp=1(Access on July 25,2018)
郭永斌、盧幸馡。越衛生乾淨越不會生病?氣喘與環境微生物的研究-淺談「衛生假說」。健康世界 2012;320:16-22。
劉介宇、洪永泰、莊義利等人。台灣地區鄉鎮市區發展類型應用於大型健康調查抽樣設計之研究。健康管理學 2006;4(1):1-22。
劉佩青。兒童氣喘與肥胖關聯性研究(博士論文)。國立臺灣大學護理學研究所。2014。
衛生福利部國民健康署。2013年「國民健康訪問調查」結果報告URL:
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=364&pid=6543
(Access on July 10,2018)
鍾慧穎、謝佳容、曾俊傑、尹立銘。室外空氣汙染物與學齡前兒童首發氣喘之關聯,2007-2011年。台灣衛誌 2016;35(2):199-208。