| 研究生: |
楊翔甯 Yang, Shiang-Ning |
|---|---|
| 論文名稱: |
雙邊不對稱球體的異質自組裝行為與螢光能量共振轉移 Fӧrster Resonance Energy Transfer in the Heterogeneous Assembly of Janus particles |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 雙邊不對稱球體 、共同自組裝 、螢光共振能量轉移 |
| 外文關鍵詞: | Janus particles, FRET, co-assembly |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,合成次微米雙邊不對稱球體並與100nm聚苯乙烯顆粒利用表面靜電力行共同自組裝。理想的共同自組裝是由四顆500nm雙邊不對稱球體排列成四面體,四面體的中心為聚苯乙烯顆粒組成。而共同自組裝的結構是由雙邊不對稱球體及聚苯乙烯顆粒間的顆粒比和顆粒大小所控制,此系統下的共同自組裝可形成多種不同的結構``。
雙邊不對稱球體是進行共同自組裝的主要顆粒,雙邊不對稱球體是由500nm的氧化矽顆粒作為核心,且其中三分之一表面帶有胺基並接上AB或NBDHA。另一種參與共同自組裝且較小的顆粒是由廠商提供的100nm聚苯乙烯顆粒,其表面帶有醋酸根的官能基。AB和NBDHA 分別代表螢光共振能量轉移的供體與受體。由於螢光能量共振轉移的特性,需要供體分子與受體分子之間非常靠近才能觸發螢光共振能量轉移,利用此特性可以去觀察共同共組裝的現象與形成。利用動態光散射光譜儀去觀察粒徑的增加以及螢光共振能量轉移所產生的螢光訊號可以明確的證明雙邊不對稱球體與聚苯乙烯顆粒的共同自組裝行為。藉由共軛聚焦顯微鏡觀察共組裝的團簇及其放出的螢光,確保供體與受體的雙邊不對稱體均有參與共組裝行為而觸發螢光共振能量轉移。穩定的共同自組裝和螢光共振能量轉移的訊號可以做為感測器機器與平台。
Asymmetric submicron Janus particles were fabricated and co-assembled with 100 nm polystyrene (PS) particles by surface electrostatic force interaction. The ideal co-assembled structure was a tetramer where four 500 nm Janus particles assembled as tetrahedron arrangement with one 100 nm PS particle in the center. The co-assembled structure with different morphologies were mainly determined by the sizes and the ratios of two particles. The co-assembled structure also included the different morphologies.
The particle co-assembly was carried out by Janus particles cored with 500 nm silica particles and functionalized with amino-silane in one of their hemispheric surfaces, followed by their conjugation with Atlantic Blue dye or NBDHA. And, the second particles with smaller diameters in the co-assembly were commercially-available PS particles, which were 100 nm polystyrene (PS) particles with carboxylated surface. Two fluorescent dyes, Atlantic Blue and NBDHA, were employed as the FRET donor and acceptor, respectively. Since the FRET took place only when the distance between the donor and acceptor objects was very close, the successful FRET signals indicated the cluster formation from the particle co-assembly. Well-defined particle co-assembly simultaneously initiated the cluster diameter increase as shown in the DLS measurement, as well as the FRET emission from their photoluminescence outputs. Observed the fluorescence color of combination type of co-assembled clusters by confocal microscope to make sure the co-assembled clusters at least included one donor and one acceptor JPs to trigger the FRET effect. Steady particle co-assembly and the related FRET responses realized the sensor mechanism and platform.
1. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 2005, 15 (35-36), 3745-3760.
2. Cho, I.; Lee, K.-W., Morphology of Latex Particles Formed by Poly(methy1 Methacrylate)-Seeded Emulsion Polymerization of Styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
3. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., Janus Beads - Realization and Behavior at Water Oil Interfaces. Europhys Lett 1989, 9 (3), 251-255.
4. de Gennes, P.-G., Soft Matter (Nobel Lecture). Angewandte Chemie International Edition in English 1992, 31 (7), 842-845.
5. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745-3760.
6. Walther, A.; Mueller, A. H. E., Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. (Washington, DC, U. S.) 2013, 113 (7), 5194-5261.
7. Wu, J. J., Hemispheric Mesoporous Janus Particles with Multi-functionalities. National Cheng Kung University 2016.
8. Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y., Janus particles for biological imaging and sensing. Analyst (Cambridge, U. K.) 2016, 141 (12), 3526-3539.
9. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv. Mater. (Weinheim, Ger.) 2010, 22 (10), 1060-1071.
10. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
11. Walther, A.; Mueller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663-668.
12. Komazaki, Y.; Hirama, H.; Torii, T., Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. Journal of Applied Physics 2015, 117 (15), 154506.
13. Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A., Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5 (6), 1857-1869.
14. Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L., Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41 (11), 4356-4378.
15. Groschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Muller, A. H., Precise hierarchical self-assembly of multicompartment micelles. Nature Communications 2012, 3, 710.
16. Groschel, A. H.; Walther, A.; Lobling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Muller, A. H., Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. Journal of the American Chemical Society 2012, 134 (33), 13850-60.
17. Xu, H.; Erhardt, R.; Abetz, V.; Muller, A. H. E.; Goedel, W. A., Janus micelles at the air/water interface. Langmuir 2001, 17 (22), 6787-6793.
18. Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y., Scalable Routes to Janus Au-SiO(2) and Ternary Ag-Au-SiO(2) Nanoparticles. Chem. Mat. 2010, 22 (13), 3826-3828.
19. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
20. He, Y. J.; Li, K. S., Novel Janus Cu-2(OH)(2)CO3/CUS microspheres prepared via a Pickering emulsion route. Journal of Colloid and Interface Science 2007, 306 (2), 296-299.
21. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495-9499.
22. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials 2005, 17 (16), 2014-2018.
23. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
24. Cayre, O. J.; Paunov, V. N., Contact Angles of Colloid Silica and Gold Particles at Air−Water and Oil−Water Interfaces Determined with the Gel Trapping Technique. Langmuir 2004, 20 (22), 9594-9599.
25. Paunov, V. N.; Cayre, O. J., Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (9-10), 788-791.
26. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
27. Huang, W. H., Field-induced and Spontaneous Self-assembly of Janus Particles. National Cheng Kung University 2012.
28. Lin, C.-C.; Liao, C.-W.; Chao, Y.-C.; Kuo, C., Fabrication and Characterization of Asymmetric Janus and Ternary Particles. ACS Appl. Mater. Interfaces 2010, 2 (11), 3185-3191.
29. Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-6.
30. Schick, I.; Lorenz, S.; Gehrig, D.; Tenzer, S.; Storck, W.; Fischer, K.; Strand, D.; Laquai, F.; Tremel, W., Inorganic Janus particles for biomedical applications. Beilstein J. Nanotechnol. 2014, 5, 2346-2362, 17 pp.
31. Chao, Y.-C.; Huang, W.-H.; Cheng, K.-M.; Kuo, C., Assembly and Manipulation of Fe3O4/Coumarin Bifunctionalized Submicrometer Janus Particles. ACS applied materials & interfaces 2014, 6 (6), 4338-4345.
32. Wang, H.; Yang, S.; Yin, S. N.; Chen, L.; Chen, S., Janus Suprabead Displays Derived from the Modified Photonic Crystals toward Temperature Magnetism and Optics Multiple Responses. ACS applied materials & interfaces 2015, 7 (16), 8827-33.
33. Graham-Rowe, D., Electronic paper rewrites the rulebook for displays. Nature Photonics 2007, 1 (5), 248-251.
34. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-+.
35. Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir 2001, 17 (16), 4708-4710.
36. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969-3976.
37. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). J Magn Magn Mater 2005, 293 (1), 663-670.
38. Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir 2008, 24 (13), 6557-6561.
39. Zhang, Q.; Dong, R.; Chang, X.; Ren, B.; Tong, Z., Spiropyran-Decorated SiO2-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly. ACS Appl. Mater. Interfaces 2015, 7 (44), 24585-24591.
40. Li, J.; Shklyaev, O. E.; Li, T.; Liu, W.; Shum, H.; Rozen, I.; Balazs, A. C.; Wang, J., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett. 2015, 15 (10), 7077-7085.
41. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-assembly: from crystals to cells. Soft Matter 2009, 5 (6), 1110-1128.
42. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular biology of the cell (third edition). Garland: New York, 1994.
43. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
44. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
45. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405 (6785), 433-437.
46. Whitesides, G. M., Self-Assembling Materials. Scientific American 1995, 273 (3), 146-149.
47. Therien-Aubin, H.; Lukach, A.; Pitch, N.; Kumacheva, E., Coassembly of nanorods and nanospheres in suspensions and in stratified films. Angew Chem Int Ed Engl 2015, 54 (19), 5618-22.
48. Lukach, A.; Therien-Aubin, H.; Querejeta-Fernandez, A.; Pitch, N.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E., Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 2015, 31 (18), 5033-41.
49. Glotzer, S. C., Some assembly required. Science 2004, 306 (5695), 419-420.
50. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000, 12 (10), 693-713.
51. Whitesides, G., WHAT WILL CHEMISTRY DO IN THE NEXT 20 YEARS. Angewandte Chemie International Edition 1990, 29 (11), 1209-1218.
52. Whitesides, G. M., The once and future nanomachine - Biology outmatches futurists' most elaborate fantasies for molecular robots. Scientific American 2001, 285 (3), 78-83.
53. Madou, M. J., fundamentals of Microfabrication. Taylor & Francis: 1997.
54. Boehringer, K. F., Fearing, R. S. & Goldberg, K. Y., The Handbook of Industrial Robotics. Wiley: New York, 1999; p 1045-1066.
55. Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J., Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Advanced Materials 2005, 17 (22), 2718-+.
56. Jonas, U.; del Campo, A.; Kruger, C.; Glasser, G.; Boos, D., Colloidal assemblies on patterned silane layers. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5034-5039.
57. Chen, K. M.; Jiang, X. P.; Kimerling, L. C.; Hammond, P. T., Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 2000, 16 (20), 7825-7834.
58. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwarter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M.; Barth, J. V., Chiral kagome lattice from simple ditopic molecular bricks. Journal of the American Chemical Society 2008, 130 (35), 11778-11782.
59. Giacometti, A.; Lado, F.; Largo, J.; Pastore, G.; Sciortino, F., Effects of patch size and number within a simple model of patchy colloids. J. Chem. Phys. 2010, 132 (17).
60. Doppelbauer, G.; Bianchi, E.; Kahl, G., Self-assembly scenarios of patchy colloidal particles in two dimensions. J. Phys.-Condes. Matter 2010, 22 (10).
61. Liu, H. J.; Kumar, S. K.; Douglas, J. F., Self-Assembly-Induced Protein Crystallization. Phys. Rev. Lett. 2009, 103 (1).
62. Chen, Q.; Whitmer, J. K.; Jiang, S.; Bae, S. C.; Luijten, E.; Granick, S., Supracolloidal Reaction Kinetics of Janus Spheres. Science 2011, 331 (6014), 199-202.
63. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of amphiphilic colloidal spheres. Langmuir 2008, 24 (3), 621-625.
64. Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469 (7330), 381-384.
65. Whitelam, S.; Bon, S. A. F., Self-assembly of amphiphilic peanut-shaped nanoparticles. J. Chem. Phys. 2010, 132 (7).
66. Kobayashi, Y.; Arai, N., Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes. Soft Matter 2015, 12 (2), 378-85.
67. Miller, W. L.; Cacciuto, A., Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Phys. Rev. E 2009, 80 (2).
68. Gangwal, S.; Cayre, O. J.; Bazant, M. Z.; Velev, O. D., Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 2008, 100 (5).
69. Kinnunen, P.; Sinn, I.; McNaughton, B. H.; Kopelman, R., High frequency asynchronous magnetic bead rotation for improved biosensors. Applied Physics Letters 2010, 97 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 223701/1-223701/3.
70. McNaughton, B. H.; Kinnunen, P.; Smith, R. G.; Pei, S. N.; Torres-Isea, R.; Kopelman, R.; Clarke, R., Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. J Magn Magn Mater 2009, 321 (10), 1648-1652.
71. McNaughton, B. H.; Agayan, R. R.; Wang, J. X.; Kopelman, R., Physiochemical microparticle sensors based on nonlinear magnetic oscillations. Sensor Actuat B-Chem 2007, 121 (1), 330-340.
72. Isojima, T.; Suh, S. K.; Sande, J. B. V.; Hatton, T. A., Controlled Assembly of Nanoparticle Structures: Spherical and Toroidal Superlattices and Nanoparticle-Coated Polymeric Beads. Langmuir 2009, 25 (14), 8292-8298.
73. Li, F.; Josephson, D. P.; Stein, A., Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie-International Edition 2011, 50 (2), 360-388.
74. Obeid, R.; Park, J. Y.; Advincula, R. C.; Winnik, F. M., Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates. Journal of Colloid and Interface Science 2009, 340 (2), 142-152.
75. Ren, B.; Ruditskiy, A.; Song, J. H.; Kretzschmar, I., Assembly Behavior of Iron Oxide-Capped Janus Particles in a Magnetic Field. Langmuir 2012, 28 (2), 1149-1156.
76. Bong, K. W.; Chapin, S. C.; Doyle, P. S., Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection. Langmuir 2010, 26 (11), 8008-8014.
77. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
78. Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional superparamagnetic Janus particles. Langmuir 2010, 26 (6), 4281-7.
79. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
80. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
81. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437 (1-2), 55-75.
82. Nagai, T.; Ibata, K.; Park, E. S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology 2002, 20 (1), 87-90.
83. Rizzo, M. A.; Springer, G. H.; Granada, B.; Piston, D. W., An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnology 2004, 22 (4), 445-9.
84. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2003, 2 (9), 630-8.
85. Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H., Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society 2004, 126 (1), 301-10.
86. Förster, T., Delocalized excitation and excitation transfer. In Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals 3, Sinanoglu, O., Ed. Academic Press: New York and London. 1965.
87. Algar, W. R.; Kim, H.; Medintz, I. L.; Hildebrandt, N., Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications. Coordination Chemistry Reviews 2014, 263, 65-85.
88. Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chemical Reviews 2014, 114 (12), 6130-6178.
89. Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society 1950, 9 (0), 14-19.
90. Arshad Hussain, S. An Introduction to Fluorescence Resonance Energy Transfer (FRET) arXiv.org [Online], 2009, p. 1-4.
91. Schobel, U.; Egelhaaf, H.-J.; Brecht, A.; Oelkrug, D.; Gauglitz, G., New Donor-Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chem. 1999, 10, 1107-1114.
92. Lohse, M. J.; Nuber, S.; Hoffmann, C., Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews 2012, 64 (2), 299-336.
93. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A., Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015, 115 (19), 10530-74.
94. Kurokawa, K.; Takaya, A.; Terai, K.; Fujioka, A.; Matsuda, M., Visualizing the signal transduction pathways in living cells with GFP-based FRET probes. Acta Histochem Cytochem 2004, 34.
95. Terai, K.; Matsuda, M., Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO reports 2005, 6 (3), 251-255.
96. Ryan, S. T. J.; Del Barrio, J.; Ghosh, I.; Biedermann, F.; Lazar, A. I.; Lan, Y.; Coulston, R. J.; Nau, W. M.; Scherman, O. A., Efficient Host–Guest Energy Transfer in Polycationic Cyclophane–Perylene Diimide Complexes in Water. Journal of the American Chemical Society 2014, 136 (25), 9053-9060.
97. Day, R. N.; Davidson, M. W., Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. Bioessays 2012, 34 (5), 341-350.