| 研究生: |
游達仁 Yu, Ta-Jen |
|---|---|
| 論文名稱: |
自由落體式後緣鋸齒衝擊波程式器之力學分析與測試 Drop Impact Analysis and Test Verification for the Terminal Peak Sawtooth Pulse Programmer |
| 指導教授: |
鄭泗滄
jheng, sih-cang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 自由落體式衝擊 、衝擊反應 、後緣鋸齒波 、類神經網路 、有限元素分析 |
| 外文關鍵詞: | impulsive environment construction, neural network, transient FEM analysis, Drop impact test |
| 相關次數: | 點閱:116 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對高價值、高規格的航太產品或軍品承受衝壓反應進行研究。將對三角錐(Cone)圓柱外形金屬材料,受到剛性衝擊平臺以自由落體式衝擊所產生的後緣鋸齒波,來進行力學分析與設計研究。並利用暫態外顯式(Transient explicit)有限元素分析軟體 - LS-DYNA,加上採用大變形塑力學的性質,經由isotropic bilinear work hardening塑性組成定律去分析暫態衝擊塑性反應及剛性衝頭平臺部位的衝擊動態加速度反應。除了瞭解金屬錐的材質和合金成份及完整大變形壓縮應力應變關係及曲線(Stress-strain relation)與有限元素分析軟體 LS-DYNA格點模型之建立和數值模擬分析以外;並且希望藉由改變金屬錐後緣鋸齒波程式器的尺寸與外型來探討衝擊波形的特性以期能了解並建構所需之衝壓測試環境。本研究首先將落錘衝頭與衝擊平臺設成剛體,在錐形體之材料性質部分則是分別採用純鉛(Pure Lead)與鉛合金(Lead alloy)這兩種材料性質並分別模擬剛性落錘衝頭衝擊這兩種不同之鉛材料之衝擊行為,並探討落錘衝頭衝擊各種不同鉛錐外型,所產生之加速度後緣鋸齒衝擊脈波的差異性與規律性。最後再加入倒傳遞類神經網路(Back-Propagation Artificial Neural Network)的理論,並配合LS-DYNA針對以不同的落錘衝頭衝擊速度衝擊不同尺寸外型之三角錐圓柱試件所模擬出來之數值,做為倒傳遞類神經網路訓練與學習的資料庫,以達到能夠事先針對不同的落錘衝擊速度衝擊不同尺寸外型之三角錐圓柱試件,所產生之加速度後緣鋸齒衝擊波之最大加速度值(Peak Acceleration)與衝擊脈波時間(Pulse Duration),來做預測與評估以幫助確定模擬與實驗所需之衝擊條件參數,並減少模擬與實驗所需耗費的時間與成本。
This research is designed to study the impulsive environment construction for military advanced electronic and/or pyrotechnic equipments testing using a drop tower tester. The special cylindrical conical tip-ended soft target samples were struck by a rigid and heavy rigid steel platform. This work numerically studied the dynamic impact response of the top surface of the platform, and the simulated terminal peak saw-tooth pulse waveform was reported. The LS-DYNA transient explicit FEM code was used to perform the numerical simulations. The isotropic bilinear work hardening constitutive law was applied to the softer target programmer. thirty-five simulated results were reported and the target samples weighing 50 to 1,400 gm were characterized to be seven types. The 12. 6 kg, 28.4 kg and 113.6 kg drop tables were used to perform the numerical drop impact tests, the acceleration wave of the top surface of the rigid tables were carefully reported and discussed. Reasonable good results were presented. Finally joins the Back-Propagation Artificial Neural Network the theory, and coordinates LS-DYNA in view of to simulate the value broach of special cylindrical conical tip-ended soft target test samples by the different drop tables drift impact speed impact different size outlook, does for the but actually transmission class nerve network training and the study information bank, achieved can beforehand aim at broach of column test sample the different drop hammer impact speed impact different size outlook, after has the acceleration the reason saw-tooth shock wave the maximum acceleration value (Peak Acceleration) with the impact pulse wave time (Pulse Duration), makes the forecast and the appraisal helps the determination to simulate and to test needs the impact condition parameter, And the reduction simulates the time and the cost which and tests must consume.
[1] S. T. Jenq, H. S. Sheu, Chang-Lin Yeh, Yi-Shao Lai, Jenq-Dah Wu, “High G drop-impact response and failure analysis of a chip packaged printed circuit board”, Int. J. Impact Engineering, (2006) doi:10.1016/j.ijimpeng.2006.07.004. (in press, available online at www.sciencedirect.com) (SCI, EI).
[2] S. T. Jenq, F. B. Hsiao, I. C. Lin, D. G. Zimcik and M. Nejad Ensan “Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor”, Computational Materials Science, (2006) doi:10.1016/j.commatsci.2006.08.008.(in press, available online at www.sciencedirect.com) (SCI, EI)
[3] S. T. Jenq, T. S. Leu, Y. G. Su, J. S. Lee and G. C. Hwang, 2005, “Developing a mini-impact system for measuring silicon wafer’s electrodynamics response”, J. Mechanics, v. 21(1), pp. 33-39. (SCI, EI)
[4] S. T. Jenq, F. B. Hsiao, M. C. Chao, D. G. Zimcik and M. Nejad Ensan, 2004, “Impact analysis of airport approach lighting towers with top-mass added”, Transactions of the Aeronautical & Astronautical Society of the Republic of China (AASRC), v. 36(1), pp. 7-19. (EI)
[5] D. G. Zimcik, M. Nejad Ensan, S. T. Jenq and M. C. Chao, 2004, “FEA simulation of airport approach lighting towers”, Journal of Structural Engineering - ASCE, v. 130(5), pp. 805-811. (SCI, EI).
[6] Jenq, S. T., J. T. Kuo and L. T. Sheu, 1998, “Ballistic impact response of 3-D four-step braided glass/epoxy composites”, J. Key Engineering Materials, v. 141-143, in Part 1: Impact Response and Dynamic Failure of Composites and Laminate Materials, pp. 349-366. (EI, SCI)
[7] Jenq, S. T. and J. J. Mo, 1996, “Ballistic impact response for two-step braided three-dimensional textile composite”, AIAA Journal, v. 34(2), pp. 375-384. (SCI, EI)
[8] Cyril Harris, Editor: Shock and Vibration Handbook, 4th Ed., McGraw-Hill, New York, 1996.
[9] R. D. Kelly & G. Richman, Principles and Techniques of Shock Data Analysis, SVM-5; The Shock and Vibration Information Center, United States Dept. of Defense, Washington, D.C., 1969.
[10] L. Meirovitch, Analytical Methods in Vibration, Macmillan, New York, 1967.
[11] Buchar J., S. Rolc, J. Voldrich, M. Lazar and M. Starek, “The development of the glass laminates resistant to the small arms fire”, the 19th International Symposium of Ballistics, 7-11, May 2001, Interlaken, Switzerland, pp. 1439 - 1445.
[12] JEDEC Committee Letter Reballot, “Board Level Drop Test Method of Components for Handheld Electronic Products”, JC-14.1-02- 286A, April 30, 2003.
[13] JEDEC Standard, “Subassembly Mechanical Shock”, JESD22-B100, March 2001.
[14] JEDEC Standard, “Mechanical Shock”, JESD 22-B104-B, March 2001.
[15] LS-DYNA3D Version 970 User’s Manual.
[16] Jenq, S. T. and C. K. Chang, 1995, "Characterization of piezo-film sensors for direct vibration and impact measurements", Experimental Mechanics, v. 35(3), pp. 224-232.
[17] Jenq, S. T. and W. D. Lee, 1997, “Identification of hole defect for GFRP woven laminates using neural network scheme”, the Proceedings of the International Workshop on Structural Health Monitoring, pp. 741-751, Stanford, CA, Sept. 18-20.
[18] Jenq, S. T. and J. C. Chen, 1999, “Impact response of double-wall glass
/epoxy composite plate structure”, the Proceedings of the 44th Inter-
national SAMP Symposium, pp. 1551-1563, Long Beach, CA, May 23-
27.
[19] Jenq, S. T., 1999, “Application of modal domain optical fiber sensing technique on measuring the dynamic response of composite structure”, NRC-NSC Aerospace Material Testing and Aircraft Maintenance, Repair and Safety Workshop, Ontario, Canada, April 26-30.
[20] Jenq, S. T. and H. B. Lin, 2000, “Dynamic strain measurement of composite structures utilizing the embedded fiber optical sensor”, J. Chinese Soc. Mech. Eng., v. 21(5), pp. 473-482.
[21] Syh-Tsang Jenq, Yuen-Zhi Tsai, Chi Chen and Heiu-Jou Shaw, 2001, “Deformation identification of a torch-heated plate utilizing a thermo-mechanical strip model in conjunction with a genetic algorithm”, the Proceedings of the 3rd International Workshop on Structural Health Monitoring, pp. 825-834, Technomic Publishing Company, Inc.
[22] Lo, H. S., H. Y. Liu and S. T. Jenq, 2001, “Determining the constitutive parameters of a viscoelastic jelly material”, Journal of Ching Yun Institute of Technology (Ching Yun academic journal), v. 21(1), pp. 85-104.
[23] Jenq, S. T., G. H. Chao and P. H. Hsu, 2002, “Damaged stiffness and mass matrix identification of a beam structure using loading and response signals”, Proceeding of the 1st European Workshop on Structure Health Monitoring, Ecole Normale Supérieure, Cachan ( Paris ), France, July 10-12.
[24] C. H. Chao, S. T. Jenq and P. S. Hsu, 2004, “Structural properties identification of damaged beam structure using real time signals”, Transactions of the Aeronautical & Astronautical Society of the Republic of China (AASRC), Vol.36, No.3, pp.259-268.
[25] M. Nejad Ensan, D. G. Zimcik, S. T. Jenq and F. B. Hsiao, 2004, “Finite element impact model of airport approach lighting towers”, the Canadian Aeronautics and Space Journal, in press.
[26] S. T. Jenq, C. H. Chao, Y. N. Jeng and H. S. Lo, 2004, “Time-domain Rotational Angle Identification of a Beam Structure Using Dynamic Transverse Deflection Signals”, the 2nd European Workshop on Structural Health Monitoring, Munich, Germany, July 7-9.
[27] H. S. Sheu, S. T. Jenq, J. D. Wu, and C. L. Yeh, “Constructing a high G impact environment for testing the advanced electronic packaged circuit board structure”, the Proceedings of the 2004 AASRC/CCAS Joint Conference, Taichung, Taiwan, Dec., 2004.
[28] S. T. Jenq, H. S. Sheu, Chang-Lin Yeh, Yi-Shao Lai, Jenq-Dah Wu, “High G Drop-Impact Response and Failure Analysis of a Chip Packaged Printed Circuit Board”, to appear in the Proceedings of the 7th Electronic Packaging Technology Conference (EPTC 2005), IEEE, Singapore, 2005.
[29] 趙志航、鄭泗滄,1998,“應用時域類神經網路識別衝擊桿的質量與速度”,中國航空太空學第四十屆全國學術研討會論文集, v. 1, pp. 445-452, 逢甲大學,Taichung, Taiwan, R.O.C., Dec. 12.
[30] 鄭泗滄, “應用LS-DYNS3D於結構衝擊及潰縮研究”, 1998 LS-DYNA/DYNA-FORM/VPG Workshop,invited lecture,國家高速電算中心,新竹科學園區,Dec. 9, 1998.
[31] Y. G. Su, S. T. Jenq and Z. H. Luo, 2002, “使用微感應器來研究矽基材料之動態衝擊反應”, SAMPE Bulletin, Taiwan Chapter (中華民國尖端材料協會會訊), v. 23, pp. 18-27。(2002 Best paper award, Graduate Student Paper Competition, SAMPE, Taiwan Chapter) (in Chinese).
[32] 鄭泗滄,“新紀元的微型飛具”, 科學月刊 (Science Monthly),2003, v. 34,no. 10,pp. 842-845 (in Chinese).
[33] S. T. Jenq, C. H. Chen, C. Chen and H. S. Lo, “Vibration diagnostics and suppression for the high-resolution scanner equipment”, 4th Pacific International Conference on Aerospace Science and Aerospace Science and Technology(PICAST4) – the Proceeding of the Second Taiwan-Canada Workshop on Aeronautics, pp. 9-14, Kaohsiung, Taiwan, May, 2001.
[34] Jenq, S. T., G. C. Hwang, and S. M. Yang, “Effect of square cut-outs on the natural frequency and mode shop of cross-ply composite laminates”, Journal of Composites Science and Technology, v. 47, pp. 91-101, 1993.
[35] G. J. O’Hara, “A numerical procedure for shock and fourier analysis”, U. S. Naval Research Laboratory Report 5772, June, 1962.
[36] Allan Piersol, “Pyroshock data acquisition and analysis for U/GRM-109G payload cover ejection test NWC TP 6927”, Naval Weapons Center, China Lake, CA, 1988.
[37] R. L. Barnoski, “Probabilistic shock spectra”, NASA CR report, Dec. 1968 (under constract NAS 1-8538 for NSAS LRC).
[38] W. Kacena, M. McGrath, and A. Rader, “Aerospace systems pyrotechnic shock data”, v. 6, NASA CR 116406, Goddard Space Flight Center, 1970.
[39] M. A. Biot, “Analytical and experimental methods in engineering seismology”, Proceedings of the ASCE, Jan., 1942.
[40] K. G. McConnel, Vibration Testing, John Wiley & Sons, Inc., New York, 1995.
[41] Matweb:http://www.matweb.com/index.
[42] Michael F. Ashby & David R H Jones, Engineering Materials 1 – An Introduction to their Properties & Applications, International Series on Materials Science & Technology, v. 34, 1987, Pergamon, Oxford, England.
[43] 廖達琪,“類神經網路系統與選舉預測-2002年北高兩市市議員選舉之案例探討”,選舉預測模型學術研討會,中央研究院中山人文社會科學研究所,2003.
[44] 黃國裕,“財務比率在股票異常報酬之預測能力分析-類神經網路法”,國立中央大學,資訊管理研究所,1994.
[45] Break, L., et al., “Optimum design of aerospace structural components using neural network”, Computer & Structures, 48 (6), pp.1001-1010, 1993.
[46] Garris, M. D. et al., “Methods for enhancing neural network handwritten character recognition”, IJCNN-91, I, pp.695-700, 1991.
[47] 葉怡成,“應用類神經網路”,台北市,儒林圖書公司,1997.
[48] American Society for Testing and Materials,ASTM, Designation : E8-04, “Standard Test Methods for Tension Testing of Metallic Materials1”, An American National Standard, American Association State Highway and Transportation Officials Standard,AASHTO No.: T68, 2004.
[49] 葉文裕、陳春萬,1997;“台灣地區鉛作業勞工暴露現況與未來研究”,勞工安全衛生簡訊,No.26, pp.1-5.
[50] 王凱達,“平編及雙牆結構玻纖複材層板承受低速落錘衝擊之研究”,國立成功大學,航空太空研究所,1994.
[51] IDT, “X-Stream Vision Cross-Platform User Manual”, Integrated Design Tools Inc, 2005.
[52] 許宏旭, “印刷電路板之低速衝擊研究”,國立成功大學,航空太空研究所,2004.