簡易檢索 / 詳目顯示

研究生: 游達仁
Yu, Ta-Jen
論文名稱: 自由落體式後緣鋸齒衝擊波程式器之力學分析與測試
Drop Impact Analysis and Test Verification for the Terminal Peak Sawtooth Pulse Programmer
指導教授: 鄭泗滄
jheng, sih-cang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: 自由落體式衝擊衝擊反應後緣鋸齒波類神經網路有限元素分析
外文關鍵詞: impulsive environment construction, neural network, transient FEM analysis, Drop impact test
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對高價值、高規格的航太產品或軍品承受衝壓反應進行研究。將對三角錐(Cone)圓柱外形金屬材料,受到剛性衝擊平臺以自由落體式衝擊所產生的後緣鋸齒波,來進行力學分析與設計研究。並利用暫態外顯式(Transient explicit)有限元素分析軟體 - LS-DYNA,加上採用大變形塑力學的性質,經由isotropic bilinear work hardening塑性組成定律去分析暫態衝擊塑性反應及剛性衝頭平臺部位的衝擊動態加速度反應。除了瞭解金屬錐的材質和合金成份及完整大變形壓縮應力應變關係及曲線(Stress-strain relation)與有限元素分析軟體 LS-DYNA格點模型之建立和數值模擬分析以外;並且希望藉由改變金屬錐後緣鋸齒波程式器的尺寸與外型來探討衝擊波形的特性以期能了解並建構所需之衝壓測試環境。本研究首先將落錘衝頭與衝擊平臺設成剛體,在錐形體之材料性質部分則是分別採用純鉛(Pure Lead)與鉛合金(Lead alloy)這兩種材料性質並分別模擬剛性落錘衝頭衝擊這兩種不同之鉛材料之衝擊行為,並探討落錘衝頭衝擊各種不同鉛錐外型,所產生之加速度後緣鋸齒衝擊脈波的差異性與規律性。最後再加入倒傳遞類神經網路(Back-Propagation Artificial Neural Network)的理論,並配合LS-DYNA針對以不同的落錘衝頭衝擊速度衝擊不同尺寸外型之三角錐圓柱試件所模擬出來之數值,做為倒傳遞類神經網路訓練與學習的資料庫,以達到能夠事先針對不同的落錘衝擊速度衝擊不同尺寸外型之三角錐圓柱試件,所產生之加速度後緣鋸齒衝擊波之最大加速度值(Peak Acceleration)與衝擊脈波時間(Pulse Duration),來做預測與評估以幫助確定模擬與實驗所需之衝擊條件參數,並減少模擬與實驗所需耗費的時間與成本。

    This research is designed to study the impulsive environment construction for military advanced electronic and/or pyrotechnic equipments testing using a drop tower tester. The special cylindrical conical tip-ended soft target samples were struck by a rigid and heavy rigid steel platform. This work numerically studied the dynamic impact response of the top surface of the platform, and the simulated terminal peak saw-tooth pulse waveform was reported. The LS-DYNA transient explicit FEM code was used to perform the numerical simulations. The isotropic bilinear work hardening constitutive law was applied to the softer target programmer. thirty-five simulated results were reported and the target samples weighing 50 to 1,400 gm were characterized to be seven types. The 12. 6 kg, 28.4 kg and 113.6 kg drop tables were used to perform the numerical drop impact tests, the acceleration wave of the top surface of the rigid tables were carefully reported and discussed. Reasonable good results were presented. Finally joins the Back-Propagation Artificial Neural Network the theory, and coordinates LS-DYNA in view of to simulate the value broach of special cylindrical conical tip-ended soft target test samples by the different drop tables drift impact speed impact different size outlook, does for the but actually transmission class nerve network training and the study information bank, achieved can beforehand aim at broach of column test sample the different drop hammer impact speed impact different size outlook, after has the acceleration the reason saw-tooth shock wave the maximum acceleration value (Peak Acceleration) with the impact pulse wave time (Pulse Duration), makes the forecast and the appraisal helps the determination to simulate and to test needs the impact condition parameter, And the reduction simulates the time and the cost which and tests must consume.

    目錄 簽名頁 授權頁 簽署人須知 誌謝 中文摘要 英文摘要 目錄 I 表目錄 IV 圖目錄 V 第1章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究方法 4 第2章 基礎理論 7 2-1 前言 7 2-2 力學分析理論 8 2-3 類神經網路緒論 10 2-4 類神經網路之簡介 11 2-5 類神經網路之原理 13 2-6 倒傳遞網路(BACK-PROPAGATION NETWORK) 16 2-6.1 倒傳遞網路所使用之非線性轉換函數 17 2-6.2 倒傳遞網路演算法 18 第3章 實驗試片、設備與程序 27 3-1 實驗試片的製作 27 3-1.1 拉伸試驗之規範介紹 27 3-1.2 SKD 11合金鋼之材料特性 27 3-1.3 SKD 11合金鋼拉伸試片簡介 28 3-1.4 鉛材料特性簡介 29 3-1.5 實驗試件之簡介 30 3-1.6 熔鉛鑄模實驗所需設備之介紹 31 3-1.7 實驗試片之製作流程 34 3-2 落錘衝擊實驗設備介紹 35 3-2.1 實驗儀器 35 3-2.2 衝擊模組之設計概述 38 3-3 實驗程序 39 3-3.1 落錘掉落衝擊鉛錐試件之實驗程序 39 第4章 數值方法與討論 55 4-1 數值模擬之方法簡介 55 4-2 有限元素之模型建構 57 4-3 類神經網路架構 59 4-4 數值分析之結果討論 61 4-4.1 不同鉛錐材質之結果討論 63 4-4.2 落錘衝頭重量與鉛錐個數之關係結果討論 65 4-4.3 多顆鉛錐不同擺放位置之結果討論 66 4-4.4 同類型鉛錐之結果比較與討論 67 4-4.5 相同鉛錐尺寸外型之結果比較與討論 70 4-4.6 同型鉛錐於不同之落錘衝擊速度下之結果討論 78 4-5 類神經網路學習預測之結果討論 82 第5章 實驗結果與討論 127 5-1 實驗與模擬驗證簡介 127 5-2 實驗與模擬結果比較 127 第6章 結論與建議 137 6-1 結論 137 6-2 未來工作與建議 139 參考文獻 140 自述 148 著作權聲明 149 表目錄 表2-1 SKD 11合金鋼之材料性質 23 表2-2 SCM440鉻鉬合金鋼之材料性質 23 表2-3 純鉛與鉛合金材料之材料性質 24 表3-1鉛錐實驗試片尺寸表 41 表4-1 各類型鉛錐尺寸表 85 表4-2 Type 3純鉛質鉛錐之Shock Pulse Data 86 表4-3 Type 3鉛合金質鉛錐之Shock Pulse Data 87 表4-4 Type 6純鉛質鉛錐之Shock Pulse Data 88 表4-5 Type 6鉛合金質鉛錐之Shock Pulse Data 89 表4-6 Type 7純鉛質鉛錐之Shock Pulse Data 90 表4-7 Type 7鉛合金質鉛錐之Shock Pulse Data 91 表4-8 Type 1全部純鉛質鉛錐之Shock Pulse Data 92 表4-9 Type 2全部純鉛質鉛錐之Shock Pulse Data 93 表4-10 Type 3全部純鉛質鉛錐之Shock Pulse Data 94 表4-11 Type 4全部純鉛質鉛錐之Shock Pulse Data 95 表4-12 Type 5全部純鉛質鉛錐之Shock Pulse Data 96 表4-13 Type 6全部純鉛質鉛錐之Shock Pulse Data 97 表4-14 Type 7全部純鉛質鉛錐之Shock Pulse Data 98 圖目錄 圖2-2-1 Elastic-plastic behavior with kinematic & isotropic hardening where l0 & l are undeformed & deformed lengths of uniaxial tension specimen. Et is the slope of the bilinear stress strain curve. 25 圖2-5-1 神經元模型 25 圖2-5-2 人工神經元模型 26 圖2-5-3 處理單元的作用 26 圖3-1-1 規範各類型之拉伸試片詳細尺寸圖 42 圖3-1-2(a) SKD 11合金鋼之材質證明 42 圖3-1-2(b) SKD 11合金鋼之材質證明 43 圖3-1-3拉伸試片外型 44 圖3-1-4 拉伸試驗規範所規定其拉伸試片尺寸圖 44 圖3-1-5鉛錐尺寸示意圖 45 圖3-1-6鉛錐試件成品圖 45 圖3-1-7 純鉛材料示意圖 46 圖3-1-8(a) 鑄鉛模具之實體圖 46 圖3-1-8(b) 鑄鉛模具之平面設計圖 47 圖3-1-9 鉛錐冷卻退模示意圖 47 圖3-2-1落錘衝擊試驗機台 48 圖3-2-2 KISTLER Type 8730A500之加速規 48 圖3-2-3 PCB 482B05電源供應器 49 圖3-2-4 KISTLER密蠟 49 圖3-2-5 Agilent型號54624A 100 MHz示波器 50 圖3-2-6 IDT型號X-STREAM高速攝影機 50 圖3-2-7 LPL VL-501攝影強光燈 51 圖3-2-8 衝擊模組之示意圖 51 圖3-2-9 高週波硬化熱處理證明 52 圖3-2-10 衝頭平面設計圖 53 圖3-2-11 底座平面設計圖 53 圖3-3-1 高速攝影機與攝影強光燈組架設示意圖 54 圖3-3-2 落錘衝擊試驗示意圖 54 圖4-1-1整體落錘衝擊單顆鉛錐試件之有限元素模型圖 99 圖4-2-1落錘衝頭與衝擊平台之尺寸與外型放大圖 99 圖4-2-2 落錘自由落體衝擊測試分析模型的邊界條件設定圖 100 圖4-2-3落錘衝頭之衝擊速度給定方向示意圖 100 圖4-2-4 Type 1-3之鉛錐尺寸模型圖 101 圖4-2-5 Type 5-1之鉛錐尺寸模型圖 101 圖4-2-6 62.5磅落錘衝頭衝擊單顆鉛錐試件之模型圖 102 圖4-2-7 250磅落錘衝頭衝擊四顆鉛錐試件之模型圖 102 圖4-2-8 4R位置之鉛錐擺放模型之示意圖 103 圖4-2-9 5R位置之鉛錐擺放模型之示意圖 103 圖 4-3-1 處理單元的作用 104 圖4-4-1 Type 3之純鉛與鉛合金質鉛錐之最大加速度值對應不同衝擊高度之比較圖 104 圖4-4-2 Type 3之純鉛與鉛合金質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 105 圖4-4-3 Type 6之純鉛與鉛合金質鉛錐之最大加速度值對應不同衝擊高度之比較圖 105 圖4-4-4 Type 6之純鉛與鉛合金質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 106 圖4-4-5 Type 7之純鉛與鉛合金質鉛錐之最大加速度值對應不同衝擊高度之比較圖 106 圖4-4-6 Type 7之純鉛與鉛合金質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 107 圖4-4-7以相同速度之單倍與四倍重量衝頭分別衝擊單顆與四顆Type 1-3之後緣鋸齒波比較圖 107 圖4-4-8以相同速度之單倍與四倍重量衝頭分別衝擊單顆與四顆Type 5-1之後緣鋸齒波比較圖 108 圖4-4-9衝擊不同擺放位置之Type 1-3鉛錐之加速度後緣鋸齒波比較圖 108 圖4-4-10衝擊不同擺放位置之Type 5-1鉛錐之加速度後緣鋸齒波比較圖 109 圖4-4-11第一類型(Type 1)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 109 圖4-4-12第二類型(Type 2)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 110 圖4-4-13第三類型(Type 3)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 110 圖4-4-14第四類型(Type 4)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 111 圖4-4-15第五類型(Type 5)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 111 圖4-4-16第六類型(Type 6)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 112 圖4-4-17第七類型(Type 7)之五種鉛錐尺寸外型之加速度後緣鋸齒衝擊脈波之比較圖 112 圖4-4-18 Type 1-0、Type 2-0、Type 3-0之加速度後緣鋸齒衝擊脈波之比較圖 113 圖4-4-19 Type 1-1、Type 2-1、Type 3-1之加速度後緣鋸齒衝擊脈波之比較圖 113 圖4-4-20 Type 1-2、Type 2-2、Type 3-2之加速度後緣鋸齒衝擊脈波之比較圖 114 圖4-4-21 Type 1-3、Type 2-3、Type 3-3之加速度後緣鋸齒衝擊脈波之比較圖 114 圖4-4-22 Type 1-4、Type 2-4、Type 3-4之加速度後緣鋸齒衝擊脈波之比較圖 115 圖4-4-23 Type 4-0、Type 5-0、Type 6-0、Type 7-0之加速度後緣鋸齒衝擊脈波之比較圖 115 圖4-4-24 Type 4-1、Type 5-1、Type 6-1、Type 7-1之加速度後緣鋸齒衝擊脈波之比較圖 116 圖4-4-25 Type 4-2、Type 5-2、Type 6-2、Type 7-2之加速度後緣鋸齒衝擊脈波之比較圖 116 圖4-4-26 Type 4-3、Type 5-3、Type 6-3、Type 7-3之加速度後緣鋸齒衝擊脈波之比較圖 117 圖4-4-27 Type 4-4、Type 5-4、Type 6-4、Type 7-4之加速度後緣鋸齒衝擊脈波之比較圖 117 圖4-4-28 Type 1之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 118 圖4-4-29 Type 1之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 118 圖4-4-30 Type 2之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 119 圖4-4-31 Type 2之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 119 圖4-4-32 Type 3之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 120 圖4-4-33 Type 3之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 120 圖4-4-34 Type 4之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 121 圖4-4-35 Type 4之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 121 圖4-4-36 Type 5之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 122 圖4-4-37 Type 5之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 122 圖4-4-38 Type 6之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 123 圖4-4-39 Type 6之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 123 圖4-4-40 Type 7之純鉛質鉛錐之最大加速度值對應不同衝擊高度之比較圖 124 圖4-4-41 Type 7之純鉛質鉛錐之加速度衝擊脈波持續時間對應不同衝擊高度之比較圖 124 圖4-5-1 最大加速度值其類神經網路預測值與原始數據之比較圖 125 圖4-5-2 最大加速度值其類神經網路學習預測之誤差收斂圖 125 圖4-5-3 衝擊脈波持續時間值其類神經網路預測值與原始數據之比較圖 126 圖4-5-4 衝擊脈波持續時間值其類神經網路學習預測之誤差收斂圖 126 圖5-2-1 落錘衝頭以0.05 m之掉落高度衝擊Type 1-3之鉛錐試件之加速後緣鋸齒衝擊脈波實驗值與模擬值之比較 134 圖5-2-2 落錘衝頭以0.25 m之掉落高度衝擊Type 1-3之鉛錐試件之加速後緣鋸齒衝擊脈波實驗值與模擬值之比較 134 圖5-2-3 落錘衝頭以0.5 m之掉落高度衝擊Type 1-3之鉛錐試件之加速後緣鋸齒衝擊脈波實驗值與模擬值之比較 135 圖5-2-4落錘衝頭以1.0 m之掉落高度衝擊Type 1-3之鉛錐試件之加速後緣鋸齒衝擊脈波實驗值與模擬值之比較 135 圖5-2-5落錘衝頭以1.5 m之掉落高度衝擊Type 1-3之鉛錐試件之加速後緣鋸齒衝擊脈波實驗值與模擬值之比較 136 圖5-2-6 Type 1-3鉛錐試件下壓變形量對應不同之落錘衝頭掉落高度之模擬與實驗結果之比較 136

    [1] S. T. Jenq, H. S. Sheu, Chang-Lin Yeh, Yi-Shao Lai, Jenq-Dah Wu, “High G drop-impact response and failure analysis of a chip packaged printed circuit board”, Int. J. Impact Engineering, (2006) doi:10.1016/j.ijimpeng.2006.07.004. (in press, available online at www.sciencedirect.com) (SCI, EI).
    [2] S. T. Jenq, F. B. Hsiao, I. C. Lin, D. G. Zimcik and M. Nejad Ensan “Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor”, Computational Materials Science, (2006) doi:10.1016/j.commatsci.2006.08.008.(in press, available online at www.sciencedirect.com) (SCI, EI)
    [3] S. T. Jenq, T. S. Leu, Y. G. Su, J. S. Lee and G. C. Hwang, 2005, “Developing a mini-impact system for measuring silicon wafer’s electrodynamics response”, J. Mechanics, v. 21(1), pp. 33-39. (SCI, EI)
    [4] S. T. Jenq, F. B. Hsiao, M. C. Chao, D. G. Zimcik and M. Nejad Ensan, 2004, “Impact analysis of airport approach lighting towers with top-mass added”, Transactions of the Aeronautical & Astronautical Society of the Republic of China (AASRC), v. 36(1), pp. 7-19. (EI)
    [5] D. G. Zimcik, M. Nejad Ensan, S. T. Jenq and M. C. Chao, 2004, “FEA simulation of airport approach lighting towers”, Journal of Structural Engineering - ASCE, v. 130(5), pp. 805-811. (SCI, EI).
    [6] Jenq, S. T., J. T. Kuo and L. T. Sheu, 1998, “Ballistic impact response of 3-D four-step braided glass/epoxy composites”, J. Key Engineering Materials, v. 141-143, in Part 1: Impact Response and Dynamic Failure of Composites and Laminate Materials, pp. 349-366. (EI, SCI)
    [7] Jenq, S. T. and J. J. Mo, 1996, “Ballistic impact response for two-step braided three-dimensional textile composite”, AIAA Journal, v. 34(2), pp. 375-384. (SCI, EI)
    [8] Cyril Harris, Editor: Shock and Vibration Handbook, 4th Ed., McGraw-Hill, New York, 1996.
    [9] R. D. Kelly & G. Richman, Principles and Techniques of Shock Data Analysis, SVM-5; The Shock and Vibration Information Center, United States Dept. of Defense, Washington, D.C., 1969.
    [10] L. Meirovitch, Analytical Methods in Vibration, Macmillan, New York, 1967.
    [11] Buchar J., S. Rolc, J. Voldrich, M. Lazar and M. Starek, “The development of the glass laminates resistant to the small arms fire”, the 19th International Symposium of Ballistics, 7-11, May 2001, Interlaken, Switzerland, pp. 1439 - 1445.
    [12] JEDEC Committee Letter Reballot, “Board Level Drop Test Method of Components for Handheld Electronic Products”, JC-14.1-02- 286A, April 30, 2003.
    [13] JEDEC Standard, “Subassembly Mechanical Shock”, JESD22-B100, March 2001.
    [14] JEDEC Standard, “Mechanical Shock”, JESD 22-B104-B, March 2001.
    [15] LS-DYNA3D Version 970 User’s Manual.
    [16] Jenq, S. T. and C. K. Chang, 1995, "Characterization of piezo-film sensors for direct vibration and impact measurements", Experimental Mechanics, v. 35(3), pp. 224-232.
    [17] Jenq, S. T. and W. D. Lee, 1997, “Identification of hole defect for GFRP woven laminates using neural network scheme”, the Proceedings of the International Workshop on Structural Health Monitoring, pp. 741-751, Stanford, CA, Sept. 18-20.
    [18] Jenq, S. T. and J. C. Chen, 1999, “Impact response of double-wall glass
    /epoxy composite plate structure”, the Proceedings of the 44th Inter-
    national SAMP Symposium, pp. 1551-1563, Long Beach, CA, May 23-
    27.
    [19] Jenq, S. T., 1999, “Application of modal domain optical fiber sensing technique on measuring the dynamic response of composite structure”, NRC-NSC Aerospace Material Testing and Aircraft Maintenance, Repair and Safety Workshop, Ontario, Canada, April 26-30.
    [20] Jenq, S. T. and H. B. Lin, 2000, “Dynamic strain measurement of composite structures utilizing the embedded fiber optical sensor”, J. Chinese Soc. Mech. Eng., v. 21(5), pp. 473-482.
    [21] Syh-Tsang Jenq, Yuen-Zhi Tsai, Chi Chen and Heiu-Jou Shaw, 2001, “Deformation identification of a torch-heated plate utilizing a thermo-mechanical strip model in conjunction with a genetic algorithm”, the Proceedings of the 3rd International Workshop on Structural Health Monitoring, pp. 825-834, Technomic Publishing Company, Inc.
    [22] Lo, H. S., H. Y. Liu and S. T. Jenq, 2001, “Determining the constitutive parameters of a viscoelastic jelly material”, Journal of Ching Yun Institute of Technology (Ching Yun academic journal), v. 21(1), pp. 85-104.
    [23] Jenq, S. T., G. H. Chao and P. H. Hsu, 2002, “Damaged stiffness and mass matrix identification of a beam structure using loading and response signals”, Proceeding of the 1st European Workshop on Structure Health Monitoring, Ecole Normale Supérieure, Cachan ( Paris ), France, July 10-12.
    [24] C. H. Chao, S. T. Jenq and P. S. Hsu, 2004, “Structural properties identification of damaged beam structure using real time signals”, Transactions of the Aeronautical & Astronautical Society of the Republic of China (AASRC), Vol.36, No.3, pp.259-268.
    [25] M. Nejad Ensan, D. G. Zimcik, S. T. Jenq and F. B. Hsiao, 2004, “Finite element impact model of airport approach lighting towers”, the Canadian Aeronautics and Space Journal, in press.
    [26] S. T. Jenq, C. H. Chao, Y. N. Jeng and H. S. Lo, 2004, “Time-domain Rotational Angle Identification of a Beam Structure Using Dynamic Transverse Deflection Signals”, the 2nd European Workshop on Structural Health Monitoring, Munich, Germany, July 7-9.
    [27] H. S. Sheu, S. T. Jenq, J. D. Wu, and C. L. Yeh, “Constructing a high G impact environment for testing the advanced electronic packaged circuit board structure”, the Proceedings of the 2004 AASRC/CCAS Joint Conference, Taichung, Taiwan, Dec., 2004.
    [28] S. T. Jenq, H. S. Sheu, Chang-Lin Yeh, Yi-Shao Lai, Jenq-Dah Wu, “High G Drop-Impact Response and Failure Analysis of a Chip Packaged Printed Circuit Board”, to appear in the Proceedings of the 7th Electronic Packaging Technology Conference (EPTC 2005), IEEE, Singapore, 2005.
    [29] 趙志航、鄭泗滄,1998,“應用時域類神經網路識別衝擊桿的質量與速度”,中國航空太空學第四十屆全國學術研討會論文集, v. 1, pp. 445-452, 逢甲大學,Taichung, Taiwan, R.O.C., Dec. 12.
    [30] 鄭泗滄, “應用LS-DYNS3D於結構衝擊及潰縮研究”, 1998 LS-DYNA/DYNA-FORM/VPG Workshop,invited lecture,國家高速電算中心,新竹科學園區,Dec. 9, 1998.
    [31] Y. G. Su, S. T. Jenq and Z. H. Luo, 2002, “使用微感應器來研究矽基材料之動態衝擊反應”, SAMPE Bulletin, Taiwan Chapter (中華民國尖端材料協會會訊), v. 23, pp. 18-27。(2002 Best paper award, Graduate Student Paper Competition, SAMPE, Taiwan Chapter) (in Chinese).
    [32] 鄭泗滄,“新紀元的微型飛具”, 科學月刊 (Science Monthly),2003, v. 34,no. 10,pp. 842-845 (in Chinese).
    [33] S. T. Jenq, C. H. Chen, C. Chen and H. S. Lo, “Vibration diagnostics and suppression for the high-resolution scanner equipment”, 4th Pacific International Conference on Aerospace Science and Aerospace Science and Technology(PICAST4) – the Proceeding of the Second Taiwan-Canada Workshop on Aeronautics, pp. 9-14, Kaohsiung, Taiwan, May, 2001.
    [34] Jenq, S. T., G. C. Hwang, and S. M. Yang, “Effect of square cut-outs on the natural frequency and mode shop of cross-ply composite laminates”, Journal of Composites Science and Technology, v. 47, pp. 91-101, 1993.
    [35] G. J. O’Hara, “A numerical procedure for shock and fourier analysis”, U. S. Naval Research Laboratory Report 5772, June, 1962.
    [36] Allan Piersol, “Pyroshock data acquisition and analysis for U/GRM-109G payload cover ejection test NWC TP 6927”, Naval Weapons Center, China Lake, CA, 1988.
    [37] R. L. Barnoski, “Probabilistic shock spectra”, NASA CR report, Dec. 1968 (under constract NAS 1-8538 for NSAS LRC).
    [38] W. Kacena, M. McGrath, and A. Rader, “Aerospace systems pyrotechnic shock data”, v. 6, NASA CR 116406, Goddard Space Flight Center, 1970.
    [39] M. A. Biot, “Analytical and experimental methods in engineering seismology”, Proceedings of the ASCE, Jan., 1942.
    [40] K. G. McConnel, Vibration Testing, John Wiley & Sons, Inc., New York, 1995.
    [41] Matweb:http://www.matweb.com/index.
    [42] Michael F. Ashby & David R H Jones, Engineering Materials 1 – An Introduction to their Properties & Applications, International Series on Materials Science & Technology, v. 34, 1987, Pergamon, Oxford, England.
    [43] 廖達琪,“類神經網路系統與選舉預測-2002年北高兩市市議員選舉之案例探討”,選舉預測模型學術研討會,中央研究院中山人文社會科學研究所,2003.
    [44] 黃國裕,“財務比率在股票異常報酬之預測能力分析-類神經網路法”,國立中央大學,資訊管理研究所,1994.
    [45] Break, L., et al., “Optimum design of aerospace structural components using neural network”, Computer & Structures, 48 (6), pp.1001-1010, 1993.
    [46] Garris, M. D. et al., “Methods for enhancing neural network handwritten character recognition”, IJCNN-91, I, pp.695-700, 1991.
    [47] 葉怡成,“應用類神經網路”,台北市,儒林圖書公司,1997.
    [48] American Society for Testing and Materials,ASTM, Designation : E8-04, “Standard Test Methods for Tension Testing of Metallic Materials1”, An American National Standard, American Association State Highway and Transportation Officials Standard,AASHTO No.: T68, 2004.
    [49] 葉文裕、陳春萬,1997;“台灣地區鉛作業勞工暴露現況與未來研究”,勞工安全衛生簡訊,No.26, pp.1-5.
    [50] 王凱達,“平編及雙牆結構玻纖複材層板承受低速落錘衝擊之研究”,國立成功大學,航空太空研究所,1994.
    [51] IDT, “X-Stream Vision Cross-Platform User Manual”, Integrated Design Tools Inc, 2005.
    [52] 許宏旭, “印刷電路板之低速衝擊研究”,國立成功大學,航空太空研究所,2004.

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE