簡易檢索 / 詳目顯示

研究生: 黃金川
Huang, Chin-Chuan
論文名稱: 以鉿基高介電係數材料作為閘極絕緣層之氧化鋅薄膜電晶體研製與電性分析
The Fabrication and Characterization of ZnO Thin-Film Transistors Using Hf-based High-k Gate Dielectrics
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化鋅薄膜電晶體高介電係數材料
外文關鍵詞: ZnO Thin-Film Transistors, High-k
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅薄膜電晶體,因其具有潛力應用於液晶面板上做為驅動與畫素開關的元件,並且可應用在新穎的全透明電路與軟性電子上,己引發熱烈的研究。然而,目前已知的氧化鋅薄膜電晶體仍存在過高的臨界電壓、太大的次臨界擺幅與過大的操作電壓等缺點,使其在應用上仍有限制。這個原因主要是一般的氧化鋅薄膜電晶體使用了低介電係數的材料(例如二氧化矽)作為閘極介電層,因此造成了較差的閘極控制力。為了克服這個低介電閘極所造成的問題,本研究選用high-k材料做為薄膜電晶體之閘極介電層。於眾多高介電係數材料之中,二氧化鉿是一很好的選擇,因其具有高介電係數以及足夠寬的能隙寬度。然而正如其應用在互補式金氧半場效電晶體的缺點一樣,二氧化鉿存在過高的缺陷密度將會阻礙它應用在薄膜電晶體的領域。因此在本論文中,我們在二氧化鉿融入鑭元素以及鈦元素以形成氧化鑭鉿與氧化鈦鉿並且以此兩種高介電係數的化合物作為閘極介電層來製作氧化鋅薄膜電晶體。
    在本論文第一部份中,我們主要探討了氧化鋅厚度對薄膜電晶體的特性的影響。我們以氮化鉭作為金屬閘極材料,搭配氧化鑭鉿作為閘極介電層來製作氧化鋅薄膜電晶體。同時製作氮化鉭/氧化鑭鉿/鋁結構的金屬/絕緣層/金屬(Metal-Insulator-metal, MIM)電容來評估氧化鑭鉿的k值與薄膜電晶體之載子遷移率。物性分析方面我們利用X光繞射分析(XRD)、化學分析電子儀(XPS)與掃描式電子顯微鏡(SEM)分析氧化鋅薄膜。經由量測出之5 fF/um^2的電容值與30 nm的物理厚度,我們計算出氧化鑭鉿的k值為25。在實驗中我們發現以沉積時間為一分鐘的氧化鋅通道之元件特性表現最好。電晶體之特性量測包括IDS-VDS和IDS-VGS特性,實驗結果顯示電晶體之開關電流比約為10^5,另由IDS-VGS萃取出臨界電壓約為0.28 V,次臨界擺幅為0.26 V/dec,而通道的載子遷移率為3.5 cm^2/V-sec。
    本論文的第二個部份我們以相似的研究架構進行,而在結構上將氧化鑭鉿介電層改為氧化鈦鉿。主要探討不同的介電層沉積後退火處理(Post Deposition Anneal, PDA)的溫度用來評估退火溫度對元件特性的影響。物性分析我們利用X光繞射分析(XRD)、化學分析電子儀(XPS)分析氧化鈦鉿薄膜。經由量測出之7 fF/um^2電容值與50 nm物理厚度,我們計算出氧化鈦鉿的k值為40,比氧化鑭鉿更高,如此高的k值對助於提高元件的驅動電流。實驗結果發現以溫度為500℃之退火處理所獲得的元件特性為最好。電晶體之特性量測包括IDS-VDS和IDS-VGS特性。電晶體之開關電流比約為10^5,另由IDS-VGS萃取出臨界電壓約為0.34 V,次臨界擺幅為0.23 V/dec,而通道的載子遷移率為2.1 cm^2/V-sec。
    由實驗結果顯示,以氮化鉭為金屬閘極分別搭配閘極介電層HfLaO與HfTiO的結構,極適用於氧化鋅薄膜電晶體,對於TFT-LCD 的應用深具潛力◦

    ZnO-based TFTs have attracted considerable attention due to their potentials toward a new driving and pixel switch component for liquid crystal display and novel applications such transparent and flexible electronics. However, most of ZnO TFTs suffered from high threshold voltage (VT), poor subshreshold swing (SS), and high operation voltage, still setting a limit on their applications. These issues mainly result from the use of low dielectric materials (such as SiO2), which usually leads to poor gate control on the channel current. To overcome the problems originated from using low-k materials, high-k materials need to be adopted as the gate dielectrics for the ZnO TFTs. Among high-k materials, Hafnium oxide (HfO2) was proposed as a good choice for its high dielectric constant and wide bandgap. However, its drawback of high charge trap density as in the CMOS application may retard its further application in the field of TFTs. Therefore, in this thesis, attempts have been made to integrate lanthanum (La) and titanium (Ti) into HfO2 to form HfLaO and HfTiO as the gate dielectrics for the fabrication of ZnO TFTs .
    In the first part of the thesis, the influence of different ZnO thicknesses on the TFT characteristics was investigated. Tantalum nitride (TaN) and hafnium lanthanum oxide (HfLaO) were employed as the gate electrode and gate insulator, respectively for ZnO thin film transistors. MIM capacitors with TaN/HfLaO/Al structure were also fabricated to evaluate the dielectric constant of high-kmaterial and device mobility. The physical properties and compositions of ZnO film were confirmed by SEM, XRD, and XPS analysis. From the highest capacitance of 5 fF/um^2 and the physical thickness of 30 nm, we estimated the dielectric of HfLaO was 25. Ids-Vds and Ids-Vgs characteristies of TFTs showed that ZnO deposited for 1 min might be the best condition for the channel layer. The Ion/Ioff ratio, threshold voltage, subthreshold swing, and mobility obtained from the fabricated ZnO-TFTs with TaN(50 nm)/HfLaO(30 nm)/Al(300 nm) structure were 10^5, 0.28 V, 0.26V/dec, and 3.5 cm^2/V-sec, respectively.
    In the second part of the thesis, the similar research scheme was applied except the HfLaO was replaced by hafnium titanium oxide (HfTiO) as the gate insulator. Different post deposition annealing (PDA) temperatures for HfTiO gate dielectrics were made to examine the temperature influences on device characteristics. The physical properties and compositions of HfTiO high-k film were also confirmed by XRD and XPS analysis. From the highest capacitance of 7 fF/um^2 and the physical thickness of 50 nm, we estimated this HfTiO dielectric has a even higher k value of 40 than HfLaO which should much benefit the driving current of ZnO TFTs. Experimental results showed the best-behaviored characteristics of ZnO-TFTs were obtained at optimum PDA temperature of 500℃ for HfTiO gate dielectrics. The Ion/Ioff ratio, threshold voltage, subthreshold swing, and mobility obtained from the fabricated ZnO-TFTs with TaN(50 nm)/HfTiO(50 nm)/Al(300 nm) structure were 10^5, 0.34 V, 0.23V/dec, and 2.1 cm^2/V-sec, respectively.
    In summary, our detailed preliminary experimental results revealed that both HfLaO and HfTiO gate dielectrics work well for future ZnO-TFTs.

    中文摘要 i 英文摘要 iv 誌 謝 vi 目 錄 vii 圖目錄 xi 表目錄 xv 第一章 緒論 1 1-1 TFT-LCD顯示器發展過程 1 1-2 氧化鋅(ZnO)晶體結構與特性 2 1-3 高介電係數材料技術與選擇 6 1-4 金屬閘極的發展與材料的選擇 9 1-5 氮化鉭(TaN)的材料特性 12 1-6 研究動機 13 第二章 理論基礎 15 2-1 MOS電容基礎理論 15 2-2 MOS氧化層缺陷之型態 18 2-3 等效氧化層厚度(EOT)及介電常數(k)之計算 22 2-4 平帶電壓(VFB)與金屬功函數(Φms)之計算 24 2-5 臨限電壓(Threshold Voltage,VT) 27 2-6 MOSFET基本操作特性 28 2-7 次臨界擺幅(Subthreshold Swing, SS) 31 2-8 載子移動率(Mobility, un) 32 第三章 實驗儀器設備介紹 33 3-1 製程設備介紹 33 3-1-1 射頻磁控濺鍍機 33 3-1-2 電子束蒸鍍機 36 3-2 材料分析儀器 38 3-2-1 掃描式電子顯微鏡 38 3-2-2 X光繞射儀(X-ray diffractometer, XRD) 40 3-2-3 X光光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 41 3-3 量測使用儀器 42 第四章 以HfLaO作為閘極介電層材料之氧化鋅薄膜電晶體分析討論 45 4-1 氧化鋅薄膜電晶體與金屬-絕緣層-金屬電容製作流程 45 4-1-1 氧化鋅薄膜電晶體製作流程 45 4-1-2 金屬-絕緣層-金屬電容製作流程 57 4-2 氧化鋅薄膜(ZnO)材料特性 61 4-2-1 SEM薄膜剖面圖 61 4-2-2 XRD薄膜分析 63 4-2-3 XPS薄膜分析 64 4-3 元件特性 66 4-3-1 TaN/HfLaO/Al電容特性 66 4-3-2 氧化鋅薄膜電晶體的電性量測 67 第五章 以HfTiO作為閘極介電層材料之氧化鋅薄膜電晶體分析討論 74 5-1 金屬-絕緣層-金屬電容與氧化鋅薄膜電晶體製作流程 74 5-1-1 氧化鋅薄膜電晶體製作流程 74 5-1-2 金屬-絕緣層-金屬電容製作流程 83 5-2 HfTiO high-k薄膜材料特性 87 5-2-1 XRD薄膜分析 87 5-2-2 XPS薄膜分析 88 5-3 元件特性 90 5-3-1 TaN/HfTiO/Al電容特性 90 5-3-2 氧化鋅薄膜電晶體的電性量測 92 第六章 結論與未來研究 98 6-1 結論 98 6-2 未來研究之建議 100 參考文獻 101

    [1]G. H. Heilmeier, L. A. Zanoni, L. A. Barton, “Dynamic scattering-A new electrooptic effect in nematic liquid crystals,” Proceedings of the IEEE, Vol. 56, pp. 1162-1171, 1968.
    [2]T. P. Brody, J. A. Asars, G. D. Dixon,“A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. on Electron Devices, Vol. 20, pp. 995-1001, 1973.
    [3]H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, pp. 268-270, 2001.
    [4]D. C. Look,“Recent advances in ZnO materials and devices,Materials Science and Engineering B, Vol. 80, pp. 383-387, 2001.
    [5]水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系博士論文,2002。
    [6]P. Nunes, D. Costa, E. Fortunato and R. Martins,“Performances presented by zinc oxide thin films deposited by RF magnetron sputtering,Vacuum , Vol. 64, pp. 293-297, 2002.
    [7]S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R.T. Williams,“Production and properties of P-N junctions in reactively sputtered ZnO,Physica B: Condensed Matter, Vol. 308, pp. 1197-1200, 2001.
    [8]V. D. Falcao, M. E. L. Sabino, D. O. Miranda, A. S. A. C. Diniz, J. R. T. Branco, “Transparent conducting zinc oxide thin film prepared by electron beam evaporation technique with argon plasma assistance,” IEEE Photovolatic Specialists Conference, Vol. 11, pp. 1-3, 2008.
    [9]X. M. Ma, X. T. Yang, C. Wang, J. Yang, X. H. Gao, J. E. Liu, H. Jing, G. T. Du, B. Y. Liu, K. Ma, “ZnO thin film grown on glass by metal-organic chemical vapor deposition,” IEEE International Nanoelectronics Conference, Vol. 24, pp. 833-835, 2008.
    [10]K. Iwata, A. Yamada, P. Fons, K. Matsubara, S. Niki, “Natural ordering of ZnO1-xSex grown by radical source MBE,” International Conference on Molecular Beam Epitaxy, Vol. 15, pp. 253-254, 2002.
    [11]S. Z. Li, C. L. Gan, H. Cai, C. L. Yuan, J. Guo, P. S. Lee, J. Ma, “Enhanced photoluminescence of ZnO/Er2O3 core-shell structure nanorods synthesized by pulsed laser deposition,” Appl. Phy. Lett., vol. 90, pp. 263106-263106-3, 2007.
    [12]B. Wang, J. H. Min, Y. Zhao, W. B. Sang, C. J. Wang, “The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis,” Appl. Phy. Lett., vol. 94, pp. 192101-192101-3, 2009.
    [13]T. Ghosh, M. Dutta, S. Mridha, D. Basak, “Effect of Cu Doping in the Structural, Electrical, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films,” J. Electrochem. Soc. Vol. 156, pp. H285-H289, 2009.
    [14]N. V. Joshy, J. Isaac, M. K. Jayaraj, “Characterization of ZnO plasma in a radio frequency sputtering system,” Appl. Phy. Lett., vol. 103, pp. 123305-123305-7, 2008.
    [15]Peardon’s Handbook of Crystallograpphic Data, pp. 2795-2796.
    [16]D. J. Leary, J. O. Barnes, and A. G. Jordan,“Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,J. Electrochem. Soc, Vol. 129, pp. 1382-1387, 1982.
    [17]G. Neumann,“On the Defect Structure of Zinc-Doped Zinc Oxide,Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [18]B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544, 1999.
    [19]V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., Vol. 89, pp. 3256-3269, 2001.
    [20]M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol. 81, pp. 472-474, 2002.
    [21]S. M. Hu, “Stress-related problems in silicon technology,” Appl. Phys. Lett., Vol. 706, pp. 53-80, 1991.
    [22]T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., Vol. 75, pp. 4001- 4003, 1999.
    [23]H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “Effect of Interface Oxide Layer on HfO2 Gate Dielectrics,” IEDM Tech. Dig., Vol. 34, pp. 141-142, 1999.
    [24]K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 11, pp. 2757-2776, 1996.
    [25]王志誠,“碳化鉿金屬閘極搭配高介電係數二氧化鉿電容與場效應電晶體之研製”,國立成功大學微電子工程研究所碩士論文,2008。
    [26]Y. C. Yeo, “Metal gate technology for nanoscaletransistors-materials election and process integration issues,” Thin Solid Films. Vol. 34, pp. 462-463, 2004.
    [27]K. A. Ellis, and R. A. Buhrman, “Boron diffusion in silicon oxides and oxynitrides,” J. Electrochem. Soc. Vol. 145, pp. 2068-2069, 1998.
    [28]F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [29]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Devices, pp. 27-28, 1980.
    [30]D. K. Schroder, “Semiconductor material and device characterization,” 2nd edition, Wiley, New York, pp. 367-369, 1998.
    [31]M. Zambuto, “Semiconductor Devices,” McGraw-Hill Book Company, Ch. 9, pp. 284-332.
    [32]A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface,” CRC Crict. Rev. Solid State Sci. 6, pp. 41-43, 1976.
    [33]M. Koyama, Y. Kamimuta, T. Ino, A. Nishiyama, A. Kaneko, S. Inumiya, K. Eguchi, and M. Takayanagi, “Careful examination on the asymmetric VFB shift problem for poly-Si/HfSiON gate stack and its solution by the Hf concentration control in the dielectric near the poly-Si interface with small EOT expense,” IEDM Tech. Dig., pp. 499-502, 2004.
    [34]H. Yamada, T. Shimizu, A. Kurokawa, and K. Ishii, “MOCVD of High-Dielectric-Constant Lanthanum Oxide Thin Films,” J. Electrochem. Soc., Vol. 150, pp. 429-435, 2003.
    [35]N. Zhan, M. C. Poon, C. W. Kok, K. L. Ng, and H. Wong, “XPS study of the thermal instability of HfO2 prepared by RF sputtering in oxygen with RTA,” J. Electrochem. Soc., Vol. 150, pp. F200-F202, 2003.
    [36]Donald A. Neamen, “Semiconductor Physics & Devices,” 3rd edition, McGraw-Hill Book Company, Ch. 11, pp. 548-550.
    [37]Donald A. Neamen, “Semiconductor Physics & Devices,” 3rd edition, McGraw-Hill Book Company, Ch. 11, pp. 529-530.
    [38]H. L. Kao, and C. T. Wu, “The Characteristic study of 2-D electron gas induced in AlN/GaN heterojunction using Helicon Sputtering system,” EDMS, pp. P90-P91, 2005.
    [39]JCPDS, Card No. 00-030-2267.
    [40]J. H. Chung, J. Y. Lee, H. S. Kim, N. W. Jang, J. H. Kim, “Effect of thickness of ZnO active layer on ZnO-TFT's characteristics,” Thin Solid Films., Vol. 516, pp. 5597-5601, 2008.

    無法下載圖示 校內:2039-07-17公開
    校外:2039-07-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE