| 研究生: |
費南鬥 Nainggolan, Fernando |
|---|---|
| 論文名稱: |
2-(2'-羥基-5'-苯甲基)苯並三唑衍生物的合成及其性質與理論分析 Synthesis, Properties, and Molecular Analysis of 2-(2’-hydroxy-5’-methylphenyl)benzotriazole Derivatives |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 苯並三唑 、紫外線吸收劑 、電子密度 、分子軌道 、密度泛函理論 |
| 外文關鍵詞: | Benzotriazole, UV absorber, Electron Density, Molecular Orbital, Density Functional Theory (DFT) |
| 相關次數: | 點閱:176 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們合成並分析2-(2'-羥基-5'-苯甲基)苯並三唑衍生物的性質。我們比較了每種化合物的理論和實驗分析。UV-Vis分光光度計被用來偵測波長200-400 nm範圍內的氯仿溶液的UV吸收光譜,來確定所合成化合物的紫外線區域的吸收性質。我們使用計算化學軟件包將實驗結果與理論結果進行了比較。
根據產物的基態(HOMO)和第一激發態(LUMO)分子的電子密度分佈圖,我們確認對於酮-苯並三唑化合物,電子從酮基的HOMO轉移到苯並三唑基團的LUMO,但對於酯-苯並三唑化合物,電子是從苯並三唑基的HOMO轉移到酯基的LUMO。酮-苯並三唑化合物的能隙(3.9 - 4.0 eV)小於酯-苯並三唑化合物的能隙(4.4 - 4.5 eV),此結果歸因於苯並三唑上C3’位置的酮基可以與C2’位置上的氫氧基產生氫鍵,形成穩定的六環的結構,且酯基團位於苯並三唑的鄰位,因此酮-苯並三唑化合物的立體障礙小於與苯基上的氧原子鍵合的酯-苯並三唑化合物的立體障礙。
酮-苯並三唑化合物的最大吸收波長朝向長波長區域移動的紅移,而酯-苯並三唑化合物的最大吸收波長朝向短波長區域的藍移。酮-苯並三唑化合物的紫外吸收光譜在UV-A(315 nm - 400 nm)和UV-B(280 nm - 315 nm)的波長區域有較強的吸收,而酯-苯並三唑化合物的紫外吸收光譜在UV-B(280 nm - 315 nm)和UV-C(200 nm - 280nm)的波長區域有較強的吸收。
In this study, 2-(2’-hydroxy-5’-methylphenyl)benzotriazole derivatives has been synthesized and their properties have been analyzed. The comparison between the theoretical and experimental analysis for each compound has been carried out as well. The properties of each compounds were determined by the UV absorptions spectrum in chloroform solvent at wavelength range from 200 nm to 400 nm using UV-Vis spectrophotometer. We compared the experimental results with theoretical results using computational chemistry software packages.
Based on the results of the ground state (HOMO) and first excited state (LUMO) density mapped surfaces, it was found that for the ketone-benzotriazole compounds, electron density moved from the ketone group as HOMO to the benzotriazole group as LUMO but for ester-benzotriazole compounds, electron density moved from the benzotriazole group as HOMO to ester group as LUMO.
The HOMO-LUMO energy gap of ketone-benzotriazole compounds (3.9 – 4.0 eV) was smaller than that of the ester-benzotriazole compounds (4.4 – 4.5 eV), which is due to the molecular structure of the ketone group is located at the meta position of benzotriazole, which causes the hydrogen bonding resulting in a six-member ring mimic; while the ester group is located at the ortho position of benzotriazole so that the steric hindrance of ketone-benzotriazole compounds were smaller than the steric hindrance of ester-benzotriazole compounds.
The UV absorption of ketone-benzotriazole compounds showed toward the longer wavelength (red shift) while the UV absorption of ester-benzotriazole compounds showed towards the shorter wavelength (blue shift). The UV absorption spectrum of ketone-benzotriazole compounds showed more intense UV-A (315 nm – 400 nm) and UV-B (280 nm – 315 nm) absorption, while the UV absorption spectrum of ester-benzotriazole compounds showed more intense UV-B (280 nm – 315 nm) and UV-C (200 nm - 280nm) absorption.
1. Seebach, D., Organic synthesis—where now? Angewandte Chemie International Edition in English 1990, 29 (11), 1320-1367.
2. Mohrig, J. R., The problem with organic chemistry labs. Journal of Chemical Education 2004, 81 (8), 1083.
3. Herron, J. D.; Nurrenbern, S. C., Chemical education research: Improving chemistry learning. Journal of Chemical Education 1999, 76 (10), 1353.
4. Hall, C. D.; Panda, S. S., The benzotriazole story. In Advances in Heterocyclic Chemistry, Elsevier: 2016; Vol. 119, pp 1-23.
5. Santos, B. A.; da Silva, A. C.; Bello, M. L.; Gonçalves, A. S.; Gouvêa, T. A.; Rodrigues, R. F.; Cabral, L. M.; Rodrigues, C. R., Molecular modeling for the investigation of UV absorbers for sunscreens: triazine and benzotriazole derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2018, 356, 219-229.
6. Ramachandran, R.; Rani, M.; Senthan, S.; Jeong, Y. T.; Kabilan, S., Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives. European journal of medicinal chemistry 2011, 46 (5), 1926-1934.
7. Chen, Z.; Huang, L.; Zhang, G.; Qiu, Y.; Guo, X., Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers. Corrosion Science 2012, 65, 214-222.
8. Kokalj, A., Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces. Faraday discussions 2015, 180, 415-438.
9. Sarker, M.; Bhadra, B. N.; Seo, P. W.; Jhung, S. H., Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5 (Co). Journal of hazardous materials 2017, 324, 131-138.
10. Chen, Y.-L.; Shih, C.-Y.; Lin, H.-S.; Huang, F.-Y., A Highly Efficient UV-C Absorber Based on Theoretical and Experimental Studies. Journal of the Chinese Chemical Society 2017, 64 (3), 282-288.
11. Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A., Machine learning for molecular and materials science. Nature 2018, 559 (7715), 547-555.
12. Obot, I.; Macdonald, D.; Gasem, Z., Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corrosion Science 2015, 99, 1-30.
13. Wypych, G., Plasticizers use and selection for specific polymers. Handbook of plasticizers 2004, 1.
14. Lubi, M. C.; Thachil, E. T., Cashew nut shell liquid (CNSL)-a versatile monomer for polymer synthesis. Designed Monomers and polymers 2000, 3 (2), 123-153.
15. Kunkely, H.; Vogler, A., Photooxidation of N, N′-bis (3, 5-di-tert.-butylsalicylidene)-1, 2-diamino hexane-manganese (III) chloride (Jacobsen catalyst) in chloroform. Inorganic Chemistry Communications 2001, 4 (12), 692-694.
16. Okafuji, A.; Biskup, T.; Hitomi, K.; Getzoff, E. D.; Kaiser, G.; Batschauer, A.; Bacher, A.; Hidema, J.; Teranishi, M.; Yamamoto, K., Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA repair 2010, 9 (5), 495-505.
17. Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P., Quantum chemistry in the age of quantum computing. Chemical reviews 2019, 119 (19), 10856-10915.
18. Matta, C. F.; Lombardi, O.; Arriaga, J. J., Two-step emergence: the quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry. Foundations of Chemistry 2020, 1-23.
19. Heitler, W.; London, F., Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 1927, 44 (6-7), 455-472.
20. Pribram-Jones, A.; Gross, D. A.; Burke, K., Dft: A theory full of holes? Annual review of physical chemistry 2015, 66, 283-304.
21. Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A., Density functional theory is straying from the path toward the exact functional. Science 2017, 355 (6320), 49-52.
22. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964, 136 (3B), B864.
23. Lehtola, S.; Blockhuys, F.; Van Alsenoy, C., An overview of self-consistent field calculations within finite basis sets. Molecules 2020, 25 (5), 1218.
24. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry 1994, 98 (45), 11623-11627.
25. Kim, K.; Jordan, K., Comparison of density functional and MP2 calculations on the water monomer and dimer. The Journal of Physical Chemistry 1994, 98 (40), 10089-10094.
26. Frisch, M. J.; Del Bene, J. E.; Raghavachari, K.; Pople, J. A., Basis set dependence of correlation corrections to protonation energies. Chemical Physics Letters 1981, 83 (2), 240-242.
27. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of chemical physics 1980, 72 (1), 650-654.
28. Andersson, M. P.; Uvdal, P., New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+ G (d, p). The Journal of Physical Chemistry A 2005, 109 (12), 2937-2941.
29. Petersson, a.; Bennett, A.; Tensfeldt, T. G.; Al‐Laham, M. A.; Shirley, W. A.; Mantzaris, J., A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. The Journal of chemical physics 1988, 89 (4), 2193-2218.
30. Petersson, G.; Al‐Laham, M. A., A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. The Journal of chemical physics 1991, 94 (9), 6081-6090.
31. McLean, A.; Chandler, G., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. The Journal of Chemical Physics 1980, 72 (10), 5639-5648.
32. Binning Jr, R.; Curtiss, L., Compact contracted basis sets for third‐row atoms: Ga–Kr. Journal of Computational Chemistry 1990, 11 (10), 1206-1216.
33. McGrath, M. P.; Radom, L., Extension of Gaussian‐1 (G1) theory to bromine‐containing molecules. The Journal of chemical physics 1991, 94 (1), 511-516.
34. Curtiss, L. A.; McGrath, M. P.; Blaudeau, J. P.; Davis, N. E.; Binning Jr, R. C.; Radom, L., Extension of Gaussian‐2 theory to molecules containing third‐row atoms Ga–Kr. The Journal of Chemical Physics 1995, 103 (14), 6104-6113.
35. Wachters, A. J. H., Gaussian basis set for molecular wavefunctions containing third‐row atoms. The Journal of Chemical Physics 1970, 52 (3), 1033-1036.
36. Raghavachari, K.; Trucks, G. W., Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. The Journal of chemical physics 1989, 91 (2), 1062-1065.
37. Peterson, K. A.; Woon, D. E.; Dunning Jr, T. H., Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+ H2→ H2+ H reaction. The Journal of chemical physics 1994, 100 (10), 7410-7415.
38. Kendall, R. A.; Dunning Jr, T. H.; Harrison, R. J., Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. The Journal of chemical physics 1992, 96 (9), 6796-6806.
39. Hill, J. G.; Peterson, K. A., Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements. The Journal of Chemical Physics 2017, 147 (24), 244106.
40. Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. The Journal of chemical physics 1993, 98 (2), 1358-1371.
41. Wilson, A. K.; van Mourik, T.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. Journal of Molecular Structure: THEOCHEM 1996, 388, 339-349.
42. Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K., Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. The Journal of Chemical Physics 2001, 114 (21), 9244-9253.
43. Weigend, F.; Köhn, A.; Hättig, C., Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. The Journal of chemical physics 2002, 116 (8), 3175-3183.
44. Leszczynski, J., Computational materials science. Elsevier: 2004.
45. Kumar, A.; Gadre, S. R., Molecular Electrostatic Potential-Based Atoms in Molecules: Shielding Effects and Reactivity Patterns. Australian Journal of Chemistry 2016, 69 (9), 975-982.
46. Zhuang, S.; Wang, H.; Ding, K.; Wang, J.; Pan, L.; Lu, Y.; Liu, Q.; Zhang, C., Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations. Chemosphere 2016, 144, 1050-1059.
47. Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews 1988, 88 (6), 899-926.
48. Reed, A. E.; Weinhold, F., Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of chemical physics 1983, 78 (6), 4066-4073.
49. Ogliaro, F.; Bearpark, M.; Heyd, J.; Brothers, E.; Kudin, K.; Staroverov, V.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A., Gaussian 09, revision a. 02. gaussian. Inc.: Wallingford, CT 2009.
50. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian 09 (Revision A. 02)[Computer software]. Gaussian Inc., Wallingford CT 2009.
51. Frisch, A.; Hratchian, H.; Dennington II, R.; Keith, T.; Millam, J.; Nielsen, B.; Holder, A.; Hiscocks, J., GaussView Version 5.0. 8, Gaussian. Inc., Wallingford, CT 2009.
52. O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M., Cclib: a library for package‐independent computational chemistry algorithms. Journal of computational chemistry 2008, 29 (5), 839-845.
53. Andzelm, J.; Wimmer, E., Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies. The Journal of chemical physics 1992, 96 (2), 1280-1303.
54. Schuler, L. D.; Van Gunsteren, W. F., On the choice of dihedral angle potential energy functions for n-alkanes. Molecular Simulation 2000, 25 (5), 301-319.
55. De Boni, L.; Toro, C.; Zilio, S. C.; Mendonca, C. R.; Hernandez, F. E., Azo-group dihedral angle torsion dependence on temperature: A theorerical–experimental study. Chemical Physics Letters 2010, 487 (4-6), 226-231.