簡易檢索 / 詳目顯示

研究生: 李洢杰
Lee, I-Chieh
論文名稱: 應用光流原理進行近景視訊影像同名點雲自動化追蹤與量測
Utilizing the Optical Flow Theory for Automatically Tracking and Positioning Homologous Points in Video Sequences
指導教授: 蔡展榮
Tsay, Jaan-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量工程學系
Department of Surveying Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 93
中文關鍵詞: 光流法視訊影像特徵匹配
外文關鍵詞: optical flow, digital video, feature matching
相關次數: 點閱:56下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全自動即時量測系統將成為未來測量發展方向之一。而以近景攝影為基礎的測量車系統將成為第一波即時系統的發展標的。在近景攝影測量工程之中人工介入最多的部分,莫過於轉點的量測。因此如何全自動進行轉點量測是達成全自動化的基礎工程。現有近景自動化轉點量測方法多為高階資訊的匹配,多應用在長基線的影像匹配中。但近年來數位視訊逐漸普及,影像品質亦日漸提升,其挾著大量且快速取得資料的特性,逐漸受到測量界的重視,使得短基線影像匹配也成為研究重點之一。本研究中以數位攝影機做為近景攝影的工具,測量車的應用環境—街道、建築物作為測試對象,測試光流法及NCC法對於短基線特徵物追蹤的效果及品質,並進行分析測試。
    本研究中針對數位視訊設計出一套特徵點自動化萃取、量測、追蹤、偵錯的流程,而這套流程能搭配任何以點為基礎的追蹤方式。研究中將測試的環境分為兩類,第一類為全3D的環境,另一類則為近似2D牆面上的特徵。在移動數位攝影機來拍攝靜止景物的情況下,分別進行左右移動拍攝、前後移動拍攝、以及圍繞物體拍攝之同名點追蹤。各自分析上述狀況下的成功追蹤率及套合精度後,以上述成果分析、比較光流及NCC兩種演算法之優缺點及適用性。
    此外,本研究也提出一新方法來改良傳統光流法之功能,使得最大追蹤距離顯著改善,且在追蹤成果的可靠性方面也有所提昇。在本文實驗例中,此新方法使成功追蹤的範圍從傳統光流法3~4像元提高至30像元以上。
    再者,研究成果顯示本流程足以提供全自動製作鑲嵌圖之應用。但在提供空三平差用途方面,須待次像元精度點位量測及新增追蹤點位原則兩方面有所改進後,方可實現。

    Automatic real-time surveying system is one of the developments in the field of surveying, while mobile mapping vehicle system based on close range photogrammetry becomes a primary research topic. Point transfer of the close-range photogrammetry requires the most manual operations. Thus, how to automate the point transfer becomes the foundation of the achieving real-time surveying. There are several automatic point transfer methods. However, most of them are used for matching high-level information in wide baseline applications. Recently, digital video becomes important in surveying because of its popularity, improved quality, and characteristics of gathering images rapidly and in quantity. These characteristics of digital video make short baseline image matching becoming one of the major research topics of Automatic Real-Time Surveying system. This research uses digital video as the tool of close-range photogrammetry, the environment of mobile mapping vehicle, such as streets and buildings, as targets. The effectiveness and quality of surveying optical flow method and NCC method and their results as well is to be analyzed and studied.
    In this study, a new flowchart is designed for automatic extracting, measuring, tracking, and error detection of the feature points in digital video. This flowchart may be used with any point-based tracking method. The surveying environment is divided into two categories: (1) the fully 3-D environment and (2) the 2-D wall surface characteristics. For still targets, digital videos are took by moving the video camcorder from left to right, from fore to aft, and surrounding the targets. The tracking rate and the image matching accuracy of digital video images were analyzed. The results were then used for comparing the advantages and suitability of optical flow method and NCC method.
    In addition, a new method is developed and presented to improve the function of traditional optical flow method. Test results show clearly that it significantly increases the maximum tracking distance and improves the reliability of the tracking results. The tracking range was increased from 3-4 pixels in traditional optical flow method to more than 30 pixels using the new method.
    Also, the results indicate that the new flowchart is useful for automatic mosaic generation using digital video images. However, both DV-image matching approaches with sub-pixel accuracy and rules for adding new tracking points still ought to be further studied before the new method can be used in aerial triangulation applications.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第1章 緒論 1 §1-1 研究動機與目的 1 §1-2 文獻回顧 3 §1-2-1 追蹤匹配方法 3 §1-2-2 光流法 4 §1-3 研究方法與流程 5 §1-4 論文架構 7 第2章 視訊影像獲取、預處理、與追蹤理論 8 §2-1 視訊影像拍攝及視訊預處理 8 §2-1-1 數位視訊處理 8 §2-1-2 數位相機攝影機發展 13 §2-1-3 DV攝影機 16 §2-1-4 影片資料處理 18 §2-2 Förstner特徵物萃取 22 §2-3 追蹤方法及理論 23 §2-3-1 光流法 24 §2-3-2 標準化互相關(NCC)匹配法 27 §2-3-3 最小二乘匹配(LSM)原理 29 第3章 同名點追蹤匹配的流程與方法 30 §3-1 同名點追蹤匹配流程 30 §3-2 模糊影像篩選 31 §3-3 特徵點萃取與篩選 32 §3-4 新增追蹤點 35 §3-5 追蹤演算法規格設計 35 §3-6 追蹤成果偵錯 36 §3-7 測試數據說明 38 第4章 光流迭代法 39 §4-1 光流迭代法的設計與特點 39 §4-2 測試1-最大移動向量長度 43 §4-3 測試2-罩窗尺寸 46 第5章 實驗與分析 49 §5-1 兩張影像追蹤成果分析 49 §5-1-1 測試1-牆面影像左右移動 49 §5-1-2 測試2- 3D狀況下旋轉移動拍攝 55 §5-1-3 測試3-進入遮蔽區與離開遮蔽區追蹤效果 59 §5-1-4 測試4-模糊影像匹配 60 §5-1-5 測試5-全3D狀況下DV攝影機向前移動拍攝 62 §5-2 多張影像追蹤成果分析 64 §5-2-1 檢定場多張影像追蹤 64 §5-2-2 建築物多張連續影像 66 §5-3 應用測試-全自動鑲嵌圖製作 67 第6章 結論與建議 70 參考文獻 77 自述 80

    王聖鐸,「近景攝影測量中人工標點的自動辨識與定位」,國立成功大學測量工程研究所碩士論文,民國87年。
    邱式鴻、王蜀嘉,「Förstner 特徵物萃取法精確性的探討」,第十五屆測量學術及應用研討會論文集,台北市,pp. 667-676,1996。
    洪偉嘉、史天元,「自動化影像套合之研究」,國立交通大學土木工程研究所碩士論文,民國87年。
    范成楝、陳繼藩,「遙控飛機空載視訊影像自動化鑲嵌方法之研究」,國立中央大學土木工程研究所碩士論文,民國90年。
    陳繼藩、范成楝,「空載視訊影像鑲嵌方法之研究」,第二十屆測量學術及應用研討會,pp. 801-805,2000。
    曾耀賢,「最小二乘法二維影像相關理論精度之研究」,國立成功大學航空測量研究所碩士論文,民國75年。
    鄭心惠,「遙測影像空間品質之評估」,國立成功大學測量工程研究所碩士論文,民國91年。
    簡顯光,「近景攝影測量在古蹟維護上之應用」,國立成功大學航空測量研究所碩士論文,民國73年。
    Chen, M.-H. , Chen C.-F., ” Target Positioning Using Object Tracking Technique for Video Images”, ACRS 2002, pp. 1-6.
    D’Apuzzo, N., Plaenkers, R., FUA, P., “Least Square Matching Tracking Algorithm for Human Body Modeling”, IAPRS Vol. XXXIII, Part B5. Amsterdam, 2000, pp. 164-171.
    Fischler, M.A., Bolles, R.C.,” Random sample Consensus: a paradigm for model fitting with application to image analysis and automated cartography”, Commun. Assoc. Comp. Mach., vol. 24: 381-395, 1981.
    Emberton, D.J.,「深入解讀MPEG」, http://taiwan.cnet.com/builder/design/story/0,2000020730,20005701,00.htm ,下載於2003年.
    Fuse, T., Shimizu, E., Tsutsumi, M.,”A Comparative Study on Gradient-Based Approaches for Optical Flow Estimation”, International Archives of Photogrammetry and Remote Sensing, July 16-23, Vol. 33, Part B5/1, pp.269-276 , 2000.
    Hartley, R., Zisserman, A., “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2000.
    Hong, S.-M., “Steady-state analysis of computational load in correlation-based image tracking”, IEE Proc.-Vis. Image Signal Process., Vol. 149, No. 3, 2002.
    Lim, S., El Gamal, A.,” Optical Flow Estimation Using High Frame Rate Sequence” Proceedings. 2001 International Conference on Image Processing, Volume: 2 , pp. 925-928, 7-10 Oct. 2001.
    Nguyen, H. T., Worring, M., Boomgaard, ” Occlusion robust adaptive template tracking” Eighth IEEE International Conference on Computer Vision, Volume: 1, pp. 678-683 , 7-14 July , 2001.
    Pritchett, P., Zisserman, A., “Wide Baseline Stereo Matching”, In Proc. 6th International Conference on Computer Vision, Bombay, India, pp. 754-760, 1998.
    Schenk, T.,” Digital Photogrammetry ”, TerraScience, 1999.
    Tekalp, M., “Digital Video Processing”, Prentice Hall, 1995.
    Trucco, E., Verri, A.,” Introductory Techniques for 3-D Computer Vision”, Prentice Hall, 1998.
    Van Gool, L., Tuytelaars, T., Ferrari, V., Strecha, C., Vanden Wyngaerd, J.,Vergauwen , M., “3D Modeling and Registration Under Wide Baseline Conditions”, ISPRS Commission III, pp.A3-A14, 2002.

    下載圖示 校內:立即公開
    校外:2003-08-12公開
    QR CODE