簡易檢索 / 詳目顯示

研究生: 黃怡棻
Huang, Yi-Fen
論文名稱: 三維電極尺寸對於微流體燃料電池效能之影響
Effect of 3D electrode dimensions on performance of microfluidic fuel cell
指導教授: 莊怡哲
Chuang, Yi-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 微流體燃料電池層流功率密度微米圓柱
外文關鍵詞: microfluidic fuel cell, laminar flow, power density, micronpillars
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來微流體燃料電池受到相當的矚目,由於其具備體積小、高功率密度以及無須質子交換膜等特性,因此可成為可攜式電子產品電源供應裝置。本研究針對探討電極表面結構對於電池效能的影響作探討,我們將電極設置於上、下平板以利於製作三維電極結構,另使用去離子水及螢光溶液模擬燃料和氧化劑於微流道中的分層與擴散並以雷射掃描共軛焦顯微鏡觀察螢光分子於流道中的分布。而為了增加電極表面積,我們在電極上製作不同規格的圓柱。實驗結果發現,兩股流的流態及分層情形會隨著不同圓柱結構有所改變,當圓柱高度越高時,流體界面會越靠近平板。至於微流體燃料電池,我們發現藉由改善濺鍍白金觸媒的均勻性可提高電池效能。當燃料(甲酸溶液)與氧化劑(過氧化氫溶液)流體流率皆為8 ml/hr時,可得到最大電流密度6.02 mA/cm2及最大功率密度1.34 mW/cm2。而隨著圓柱高度增加,最大功率密度也隨著增加當圓柱,當高度為120um時,可得到之最大電流密度為9.8 mA/cm2及最大功率密度為2.6 mW/cm2。

    In this study, the vertical streaming of two fluid flows and diffusion inside the microchannel with micropillar array were investigated. Moreover, the effect of the micropillar electrodes on the performance of microfluidic fuel cell (MFC) was discussed. It was found that the interface between two fluid flows moved away from the center line and toward the plane surface as the height of the micropillars increased. In addition, the diffusion zone increased after the fluid flowing through the micropillar array. As to the performance of MFC, the uniformity of the platinum provided better MFC efficiency. The maximum current and power density increased as the height of micropillars increased up to 20 micron and, in this study, were measured 9.8 mA/cm2 and 2.6 mW/cm2, respectively using 120 micron micropillar array.

    目錄 中文摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 文獻回顧 5 2.1 微流體燃料電池概述 5 2.2 微流體燃料電池基本原理 9 2.3 燃料與氧化劑 13 2.4電極材料及表面結構 16 2.5微流體燃料電池裝置設計 20 2.6研究動機與目的 25 第三章 材料與方法 26 3.1 實驗藥品與材料 26 3.2 實驗儀器 33 3.3 實驗流程 44 3.3.1 微流道的製備 44 3.3.2 微流體燃料電池的製備 47 第四章 結果與討論 54 4.1 流體上、下分層情形 54 4.1.1 圓柱陣列對流態影響 54 4.1.2 不同圓柱尺寸對流態影響 62 4.2 微流體燃料電池電化學分析 64 4.2.1 白金觸媒對電池效率的影響 64 4.2.2 不同圓柱尺寸對電池效率影響 66 第五章 結論 75 第六章 未來工作 76 參考文獻 77

    [1] 左俊德, 何玉麗, 林祐民, and 張詩韻, "台灣燃料電池產業發展策略之研
    究," 財團法人台灣經濟研究院, pp. 2-6, 2000.
    [2] C. K. Dyer, "Fuel cells for portable applications," Journal of Power Sources, vol. 106, pp. 31-34, Apr 2002.
    [3] R. Ferrigno, A. D. Stroock, T. D. Clark, M. Mayer, and G. M. Whitesides, "Membraneless vanadium redox fuel cell using laminar flow," Journal of the American Chemical Society, vol. 124, pp. 12930-12931, Nov 2002.
    [4] E. Kjeang, N. Djilali, and D. Sinton, "Microfluidic fuel cells: A review," Journal of Power Sources, vol. 186, pp. 353-369, Jan 2009.
    [5] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, Jul 2006.
    [6] P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science, vol. 285, pp. 83-85, Jul 1999.
    [7] S. K. Yoon, G. W. Fichtl, and P. J. A. Kenis, "Active control of the depletion boundary layers in microfluidic electrochemical reactors," Lab on a Chip, vol. 6, pp. 1516-1524, Dec 2006.
    [8] R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides, and H. A. Stone, "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels," Applied Physics Letters, vol. 76, pp. 2376-2378, Apr 2000.
    [9] J. L. Cohen, D. J. Volpe, D. A. Westly, A. Pechenik, and H. D. Abruna, "A dual electrolyte H-2/O-2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V," Langmuir, vol. 21, pp. 3544-3550, Apr 12 2005.
    [10] S. Hasegawa, K. Shimotani, K. Kishi, and H. Watanabe, "Electricity Generation from Decomposition of Hydrogen Peroxide," Electrochemical and Solid-State Letters, vol. 8, p. A119, 2005.
    [11] E. Choban, J. Spendelow, L. Gancs, A. Wieckowski, and P. Kenis, "Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media," Electrochimica Acta, vol. 50, pp. 5390-5398, 2005.
    [12] E. Choban, "Microfluidic fuel cell based on laminar flow," Journal of Power Sources, vol. 128, pp. 54-60, 2004.
    [13] A. Li, S. H. Chan, and N.-T. Nguyen, "A laser-micromachined polymeric membraneless fuel cell," Journal of Micromechanics and Microengineering, vol. 17, pp. 1107-1113, 2007.
    [14] E. Kjeang, A. G. Brolo, D. A. Harrington, N. Djilali, and D. Sinton, "Hydrogen Peroxide as an Oxidant for Microfluidic Fuel Cells," Journal of The Electrochemical Society, vol. 154, p. B1220, 2007.
    [15] E. Kjeang, R. Michel, D. A. Harrington, D. Sinton, and N. Djilali, "An alkaline microfluidic fuel cell based on formate and hypochlorite bleach," Electrochimica Acta, vol. 54, pp. 698-705, 2008.
    [16] R. S. Jayashree, L. Gancs, E. R. Choban, A. Primak, D. Natarajan, L. J. Markoski, et al., "Air-breathing laminar flow-based microfluidic fuel cell," Journal of the American Chemical Society, vol. 127, pp. 16758-16759, Dec 2005.
    [17] K. S. Salloum, J. R. Hayes, C. A. Friesen, and J. D. Posner, "Sequential flow membraneless microfluidic fuel cell with porous electrodes," Journal of Power Sources, vol. 180, pp. 243-252, May 15 2008.
    [18] M. H. Sun, G. V. Casquillas, S. S. Guo, J. Shi, H. Ji, Q. Ouyang, et al., "Characterization of microfluidic fuel cell based on multiple laminar flow," Microelectronic Engineering, vol. 84, pp. 1182-1185, May-Aug 2007.
    [19] J. L. Cohen, D. A. Westly, A. Pechenik, and H. D. Abruna, "Fabrication and preliminary testing of a planar membraneless microchannel fuel cell," Journal of Power Sources, vol. 139, pp. 96-105, Jan 4 2005.
    [20] R. S. Jayashree, D. Egas, J. S. Spendelow, D. Natarajan, L. J. Markoski, and P. J. A. Kenis, "Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte," Electrochemical and Solid-State Letters, vol. 9, pp. A252-A256, 2006.
    [21] E. R. Choban, J. S. Spendelow, L. Gancs, A. Wieckowski, and P. J. A. Kenis, "Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media," Electrochimica Acta, vol. 50, pp. 5390-5398, Sep 2005.
    [22] E. R. Choban, P. Waszczuk, and P. J. A. Kenis, "Characterization of Limiting Factors in Laminar Flow-Based Membraneless Microfuel Cells," Electrochemical and Solid-State Letters, vol. 8, p. A348, 2005.
    [23] W. Sung and J.-W. Choi, "A membraneless microscale fuel cell using non-noble catalysts in alkaline solution," Journal of Power Sources, vol. 172, pp. 198-208, 2007.
    [24] E. Kjeang, R. Michel, D. A. Harrington, N. Djilali, and D. Sinton, "A microfluidic fuel cell with flow-through porous electrodes," Journal of the American Chemical Society, vol. 130, pp. 4000-4006, Mar 2008.
    [25] E. Kjeang, J. McKechnie, D. Sinton, and N. Djilali, "Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes," Journal of Power Sources, vol. 168, pp. 379-390, Jun 1 2007.
    [26] E. Kjeang, A. G. Brolo, D. A. Harrington, N. Djilali, and D. Sinton, "Hydrogen peroxide as an oxidant for microfluidic fuel cells," Journal of the Electrochemical Society, vol. 154, pp. B1220-B1226, 2007.
    [27] 藍淑娟, 中孔洞碳擔體對直接甲醇燃料電池效能之影響: National Cheng Kung University Department of Chemical Engineering, 2007.
    [28] D. Mei, X. Lou, M. Qian, Z. Yao, L. Liang, and Z. Chen, "Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number," International Journal of Heat and Mass Transfer, vol. 70, pp. 709-718, Mar 2014.
    [29] R. S. Jayashree, S. K. Yoon, F. R. Brushett, P. O. Lopez-Montesinos, D. Natarajan, L. J. Markoski, et al., "On the performance of membraneless laminar flow-based fuel cells," Journal of Power Sources, vol. 195, pp. 3569-3578, 2010.
    [30] 顏亦伶,探討流體之垂直分層應用於微流體燃料電池及電極結構對電池 效能的影響:National Cheng Kung University Department of Chemical Engineering, 2012.

    下載圖示 校內:2016-08-18公開
    校外:2016-08-18公開
    QR CODE