簡易檢索 / 詳目顯示

研究生: 程俊傑
Cheng, Jun-jie
論文名稱: 探討以圖案式分子梳技術製備整齊排列之長DNA奈米束
Investigation of Patterned Molecular Combing Technique for Generating Aligned and Long DNA Nanostrands
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 138
中文關鍵詞: 分子梳DNA 奈米束polydimethyl siloxane(PDMS)奈米流道
外文關鍵詞: molecular combing, polydimethyl siloxane (PDMS), DNA nanostrands, nanochannels
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於DNA本身具有奈米維度及專一性鍵結的特色,近年來以DNA為模板製作奈米結構的方法受到廣泛的注意。其中一種具有潛力的技術是利用分子梳法(molecular combing)搭配具微結構的印章,之後經由軟印法(soft lithography)將奈米線轉印至其他基材上1。以此作法,可以在短時間內製備大面積整齊排列之DNA奈米束,其直徑約數奈米,長度甚至可達1微米。雖然此技術已證實為一相當可靠的方法,但至今尚未深入地探討研究。另外,此方法製得之奈米束具有刺狀結構,對之後的研究應用可能會產生影響,如:流體通入奈米流道時,流道內空氣無法完全排除;奈米線彼此的間距受到限制、金屬化所得的金屬線有分岔等。因此,本研究深入探討一系列製程參數對產生DNA奈米束陣列的影響,並期望能消除刺狀結構。由尺度分析的結果得知,提高溶液黏度後,即使慢速掀起PDMS印章,退水界面仍有機會跨越微孔洞進而形成長奈米束,且可消除因快速掀起PDMS印章時所產生刺狀結構的問題。此外,隨著微孔洞直徑和溶液黏度的提升能得到較長的奈米束,但長度分佈較不均勻;同時提升黏度後會因甘油的包覆造成奈米束高度的增加。以半自動裝置製備DNA奈米束,其排列之方向性較易控制。製備完成的DNA奈米束模板可以進一步以h-PDMS(hard PDMS)或金屬材料(如:金、鋁)複製出奈米流道。

      In recent years, DNA-assisted nanofabrication has been receiving great attention due to its nanoscale dimension, specific binding through hybridization and modifiable functional groups. However, since it is at the coiled state in the solution, one needs to stretch and fix the DNAs onto the substrate at proper or designated locations in order to take advantage of its 1-D nanoscale dimension and, potentially, construct nanoscale element/device. One of the promising techniques is to perform the molecular combing with patterned stamps followed by transferring the nanowires via soft lithography (or so-called patterned molecular combing) 1. By doing so, a large area of aligned and ordered DNA nanostrands with several nanometers in diameter and up to 1 mm in length can be obtained within relatively short time. Although the technique was proved to be a reliable method, it has not been thoroughly investigated. In addition, thorn-like structures split from the nanostrands could be problematic for further applications such as air trapped inside the nanochannels when filling the solution, constraint on the minimum separating distance between two adjacent nanostrands, defects on metallic nanowires fabricated through metallization of DNA nanostrands. Therefore, in this study, we conducted a series of experiments to address the effect of several processing parameters on fabrication of nanostrands and intended to eliminate the thorn-like structures. The results showed that the lower peeling-off speed can be applied to generate long DNA nanostrands when using DNA solution with higher viscosity and the thorn-like structures can be effectively eliminated. Furthermore, the higher the solution viscosity and the larger the microwells are, the longer the DNA nanostrands can be generated on the substrate (not crossing over the microwells); however, the broader distribution of the length of the DNA nanostrands is obtained. The roller machine provides a better control of the direction of the generated DNA nanostrands. In addition, replication of DNA nanostrands can be achieved through casting h-PDMS(hard PDMS) and metallic materials for further fabrication of nanochannels.

    中文摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 X 圖目錄 XI 符號 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究現況與瓶頸 2 1-3 研究動機與目的 3 第二章 文獻回顧 5 2-1 DNA拉伸及固定技術 5 2-1-1 前言 5 2-1-2 分子梳技術原理及研究現況 6 2-1-3 分子梳技術之研究動機與方向 14 2-2奈米流道製作技術 15 2-2-1 前言 15 2-2-2 塊材/薄膜加工和晶圓接合 16 2-2-3 表面加工 21 2-2-4 模板加工 22 2-2-5 特殊製程 26 第三章 實驗材料與方法 46 3-1 PDMS印章製作流程 46 3-1-1 實驗藥品 46 3-1-2 實驗儀器 47 3-1-3 實驗流程 49 3-2 拉伸DNA奈米束 54 3-2-1 實驗藥品 54 3-2-2 實驗儀器 55 3-2-3 實驗流程 56 3-3 以DNA為模板製作奈米流道 58 3-3-1 實驗藥品 58 3-3-2 實驗儀器 59 3-3-3 實驗流程 61 3-4 分析與量測 62 3-4-1 倒立式螢光顯微鏡 62 3-4-2 原子力顯微鏡(atomic force microscope;AFM) 63 3-4-3 掃描式電子顯微鏡(scanning electron microscope;SEM) 65 第四章 圖案式分子梳結合軟微影技術製作DNA奈米束陣列 74 4-1 PDMS印章掀起速度 74 4-2 微孔洞中心間距 75 4-3 微孔洞直徑 75 4-4 DNA溶液黏度 76 4-4-1 溶液黏度量測 78 4-4-2 孔洞大小及間距對形成DNA奈米束的影響 78 4-5 DNA分子束轉置至玻璃基板 80 4-5-1 低黏度DNA溶液 81 4-5-2 高黏度DNA溶液 82 4-6 半自動化製作整齊且大面積DNA奈米束陣列 83 4-7 小結 84 第五章 以DNA為模板製作奈米流道 102 5-1 以PDMS及h-PDMS製作奈米流道 102 5-1-1 複製DNA奈米束模板 102 5-1-2 奈米流道封裝 105 5-2 以金屬材料製作奈米流道 108 5-2-1 複製DNA奈米束模板 108 5-2-2 奈米流道封裝 109 5-3 小結 110 第六章 總結論 123 第七章 未來工作 125 第八章 參考文獻 128 附錄一 蔗糖提升DNA溶液黏度 136

    1. Guan, J.J. & Lee, J. "Generating highly ordered DNA nanostrand arrays". Proceedings of the National Academy of Sciences of the United States of America 102, 18321-18325 (2005).
    2. Feynman, "There's plenty of room at the Bottom," Annual Meeting of APS, Caltech. (1959)
    3. 范光照, 黃漢邦, 陳炳煇, 張所鋐 & 顏家鈺, "奈米工程概論",普林斯頓國際有限公司, (2003).
    4. 林建忠, "奈米科技:基礎與實務",新文京開發出版股份有限公司, (2006).
    5. Richter, J. "Metallization of DNA". Physica E-Low-Dimensional Systems & Nanostructures 16, 157-173 (2003).
    6. Wanekaya, A.K., Chen, W., Myung, N.V. & Mulchandani, A. "Nanowire-based electrochemical biosensors". Electroanalysis 18, 533-550 (2006).
    7. 楊日昌, "台灣奈米科技:從2004到嚮往的未來",工業技術研究院奈米科技研發中心, (2003).
    8. Watson, J. & Crick, F. 623-624 (Am Psychiatric Assoc, 2003).
    9. Ito, Y. & Fukusaki, E. "DNA as a 'nanomaterial'". Journal of Molecular Catalysis B-Enzymatic 28, 155-166 (2004).
    10. Seeman, N.C. "DNA in a material world". Nature 421, 427-431 (2003).
    11. Csaki, A., Maubach, G., Born, D., Reichert, J. & Fritzsche, W. "DNA-based molecular nanotechnology". Single Molecules 3, 275-280 (2002).
    12. Becerril, H.A. & Woolley, A.T. "DNA-templated nanofabrication". Chemical Society Reviews 38, 329-337 (2009).
    13. Gu, Q. et al. "DNA nanowire fabrication". Nanotechnology 17, R14-R25 (2006).
    14. Yoshikawa, K. "Controlling the higher-order structure of giant DNA molecules". Advanced Drug Delivery Reviews 52, 235-244 (2001).
    15. Melnikov, S.M., Sergeyev, V.G. & Yoshikawa, K. "Transition of Double-Stranded DNA Chains between Random Coil and Compact Globule States Induced by Cooperative Binding of Cationic Surfactant". Journal of the American Chemical Society 117, 9951-9956 (1995).
    16. Hirano, K., Baba, Y., Matsuzawa, Y. & Mizuno, A. "Manipulation of single coiled DNA molecules by laser clustering of microparticles". Applied Physics Letters 80, 515-517 (2002).
    17. Ashkin, A. "Optical trapping and manipulation of neutral particles using lasers". Proceedings of the National Academy of Sciences of the United States of America 94, 4853-4860 (1997).
    18. Smith, S.B., Finzi, L. & Bustamante, C. "Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads". Science 258, 1122-1126 (1992).
    19. Dukkipati, V.R. & Pang, S.W. "Precise DNA placement and stretching in electrode gaps using electric fields in a microfluidic system". Applied Physics Letters 90, - (2007).
    20. Piner, R.D., Zhu, J., Xu, F., Hong, S.H. & Mirkin, C.A. ""Dip-pen" nanolithography". Science 283, 661-663 (1999).
    21. Shivashankar, G.V. & Libchaber, A. "Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer". Applied Physics Letters 71, 3727-3729 (1997).
    22. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. "DNA-templated assembly and electrode attachment of a conducting silver wire". Nature 391, 775-778 (1998).
    23. Bensimon, A. et al. "Alignment and Sensitive Detection of DNA by a Moving Interface". Science 265, 2096-2098 (1994).
    24. Bensimon, D., Simon, A.J., Croquette, V. & Bensimon, A. "Stretching DNA with a Receding Meniscus - Experiments and Models". Physical Review Letters 74, 4754-4757 (1995).
    25. Michalet, X. et al. "Dynamic molecular combing: Stretching the whole human genome for high-resolution studies". Science 277, 1518-1523 (1997).
    26. Allemand, J.F., Bensimon, D., Jullien, L., Bensimon, A. & Croquette, V. "pH-dependent specific binding and combing of DNA". Biophysical Journal 73, 2064-2070 (1997).
    27. Yokota, H. et al. "A new method for straightening DNA molecules for optical restriction mapping". Nucleic Acids Research 25, 1064-1070 (1997).
    28. Yokota, H., Sunwoo, J., Sarikaya, M., van den Engh, G. & Aebersold, R. "Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy". Analytical Chemistry 71, 4418-4422 (1999).
    29. Deng, Z.X. & Mao, C.D. "DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays". Nano Letters 3, 1545-1548 (2003).
    30. Kim, J.H., Shi, W.X. & Larson, R.G. "Methods of stretching DNA molecules using flow fields". Langmuir 23, 755-764 (2007).

    31. Nakao, H. et al. "Development of novel polymer-coated substrates for straightening and fixing DNA". Nano Letters 2, 475-479 (2002).
    32. Nakao, H., Gad, M., Sugiyama, S., Otobe, K. & Ohtani, T. "Transfer-printing of highly aligned DNA nanowires". Journal of the American Chemical Society 125, 7162-7163 (2003).
    33. Bjork, P., Holmstrom, S. & Inganas, O. "Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer". Small 2, 1068-1074 (2006).
    34. Marinova, K.G., Christova, D., Tcholakova, S., Efremov, E. & Denkov, N.D. "Hydirophobization of glass surface by adsorption of poly(dimethylsiloxane)". Langmuir 21, 11729-11737 (2005).
    35. Thibault, C., Severac, C., Mingotaud, A.F., Vieu, C. & Mauzac, M. "Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides". Langmuir 23, 10706-10714 (2007).
    36. Glasmastar, K., Gold, J., Andersson, A.S., Sutherland, D.S. & Kasemo, B. "Silicone transfer during microcontact printing". Langmuir 19, 5475-5483 (2003).
    37. Gad, M., Sugiyama, S. & Ohtani, T. "Method for Patterning stretched DNA molecules on mica surfaces by soft lithography". Journal of Biomolecular Structure & Dynamics 21, 387-393 (2003).
    38. Gueroui, Z., Place, C., Freyssingeas, E. & Berge, B. "Observation by fluorescence microscopy of transcription on single combed DNA". Proceedings of the National Academy of Sciences of the United States of America 99, 6005-6010 (2002).
    39. Bjork, P., Herland, A., Scheblykin, I.G. & Inganas, O. "Single molecular imaging and spectroscopy of conjugated polyelectrolytes decorated on stretched aligned DNA". Nano Letters 5, 1948-1953 (2005).
    40. Xia, Y.N. & Whitesides, G.M. "Soft lithography". Annual Review of Materials Science 28, 153-184 (1998).
    41. Xia, Y.N. & Whitesides, G.M. "Soft lithography". Angewandte Chemie-International Edition 37, 551-575 (1998).
    42. Guan, J.J., Yu, B. & Lee, L.J. "Forming highly ordered arrays of functionalized polymer nanowires by dewetting on micropillars". Advanced Materials 19, 1212-+ (2007).
    43. Cannon, D.M., Flachsbart, B.R., Shannon, M.A., Sweedler, J.V. & Bohn, P.W. "Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates". Applied Physics Letters 85, 1241-1243 (2004).
    44. Bilenberg, B. et al. in 31st International Conference on Micro- and Nano-Engineering 1609-1612 (Elsevier Science Bv, Vienna, AUSTRIA, 2005).
    45. Li, J. et al. "Ion-beam sculpting at nanometre length scales". Nature 412, 166-169 (2001).
    46. Schattenburg, M.L., Anderson, E.H. & Smith, H.I. "X-Ray/Vuv Transmission Gratings for Astrophysical and Laboratory Applications". Physica Scripta 41, 13-20 (1990).
    47. Mikayama, T., Suzuki, T., Matsui, J. & Miyashita, T. "Fabrication of depth-controllable nanochannel with polymer nanoassembled films using atomic force microscopy lithography". Polymer Journal 37, 854-857 (2005).
    48. Xie, X.N., Chung, H.J., Sow, C.H. & Wee, A.T.S. "Nanoscale materials patterning and engineering by atomic force microscopy nanolithography". Materials Science & Engineering R-Reports 54, 1-48 (2006).
    49. Chen, X. et al. "Aligned horizontal silica nanochannels by oxidative self-sealing of patterned silicon wafers". Chemistry of Materials 19, 3-5 (2007).
    50. Becerril, H.A. & Woolley, A.T. "DNA shadow nanolithography". Small 3, 1534-1538 (2007).
    51. Mao, P. & Han, J.Y. "Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding". Lab on a Chip 5, 837-844 (2005).
    52. Shao, P.E. et al. "Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding". Applied Physics Letters 88, - (2006).
    53. Kutchoukov, V.G. et al. "Fabrication of nanofluidic devices using glass-to-glass anodic bonding". Sensors and Actuators a-Physical 114, 521-527 (2004).
    54. Watanabe, R., Kamata, K. & Iyoda, T. "Nanodimple arrays fabricated on SiO2 surfaces by wet etching through block copolymer thin films". Japanese Journal of Applied Physics 47, 5039-5041 (2008).
    55. Bell, F.H. & Joubert, O. "Polysilicon gate etching in high density plasmas .5. Comparison between quantitative chemical analysis of photoresist and oxide masked polysilicon gates etched in HBr/Cl-2/O-2 plasmas". Journal of Vacuum Science & Technology B 15, 88-97 (1997).
    56. Haneveld, J., Jansen, H., Berenschot, E., Tas, N. & Elwenspoek, M. "Wet anisotropic etching for fluidic 1D nanochannels". Journal of Micromechanics and Microengineering 13, S62-S66 (2003).
    57. Eijkel, J.C.T., Bomer, J., Tas, N.R. & van den Berg, A. "1-D nanochannels fabricated in polyimide". Lab on a Chip 4, 161-163 (2004).
    58. Tas, N.R. et al. "2D-confined nanochannels fabricated by conventional micromachining". Nano Letters 2, 1031-1032 (2002).
    59. Harnett, C.K., Coates, G.W. & Craighead, H.G. "Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics". Journal of Vacuum Science & Technology B 19, 2842-2845 (2001).
    60. Stern, M.B., Geis, M.W. & Curtin, J.E. "Nanochannel fabrication for chemical sensors". Journal of Vacuum Science & Technology B 15, 2887-2891 (1997).
    61. Li, W.L. et al. "Sacrificial polymers for nanofluidic channels in biological applications". Nanotechnology 14, 578-583 (2003).
    62. Cao, H. et al. "Fabrication of 10 nm enclosed nanofluidic channels". Applied Physics Letters 81, 174-176 (2002).
    63. Yu, Z.N., Wu, W., Chen, L. & Chou, S.Y. "Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications". Journal of Vacuum Science & Technology B 19, 2816-2819 (2001).
    64. Guo, L.J., Cheng, X. & Chou, C.F. "Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching". Nano Letters 4, 69-73 (2004).
    65. Komuro, M. et al. in International Microprocesses and Nanotechnology Conference 7075-7079 (Inst Pure Applied Physics, Tokyo, Japan, 2000).
    66. Chou, S.Y., Krauss, P.R. & Renstrom, P.J. "Imprint lithography with 25-nanometer resolution". Science 272, 85-87 (1996).
    67. Chou, S.Y., Krauss, P.R. & Renstrom, P.J. "Imprint of Sub-25 Nm Vias and Trenches in Polymers". Applied Physics Letters 67, 3114-3116 (1995).
    68. Colburn, M. et al. "Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process". Journal of Vacuum Science & Technology B 19, 2162-2172 (2001).
    69. Xia, Y.N. & Whitesides, G.M. "Reduction in the Size of Features of Patterned Sams Generated by Microcontact Printing with Mechanical Compression of the Stamp". Advanced Materials 7, 471-473 (1995).
    70. Liang, X.G., Morton, K.J., Austin, R.H. & Chou, S.Y. "Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint Mold fabrication and direct imprinting". Nano Letters 7, 3774-3780 (2007).
    71. Zhao, X.M., Xia, Y.N. & Whitesides, G.M. "Soft lithographic methods for nano-fabrication". Journal of Materials Chemistry 7, 1069-1074 (1997).
    72. Colburn, M. et al. 379-389 (1999).
    73. Chou, S.Y., Keimel, C. & Gu, J. "Ultrafast and direct imprint of nanostructures in silicon". Nature 417, 835-837 (2002).
    74. Shin, M.K., Kim, S.K., Lee, H., Kim, S.I. & Kim, S.J. "The fabrication of polymeric nanochannels by electrospinning". Nanotechnology 19, - (2008).
    75. Choi, S., Yan, M. & Adesida, I. "Fabrication of triangular nanochannels using the collapse of hydrogen silsesquioxane resists". Applied Physics Letters 93, - (2008).
    76. Szoszkiewicz, R. et al. "High-speed, sub-15 nm feature size thermochemical nanolithography". Nano Letters 7, 1064-1069 (2007).
    77. Sivanesan, P., Okamoto, K., English, D., Lee, C.S. & DeVoe, D.L. "Polymer nanochannels fabricated by thermomechanical deformation for single-molecule analysis". Analytical Chemistry 77, 2252-2258 (2005).
    78. Zaumseil, J. et al. "Three-dimensional and multilayer nanostructures formed by nanotransfer printing". Nano Letters 3, 1223-1227 (2003).
    79. Huh, D. et al. "Tuneable elastomeric nanochannels for nanofluidic manipulation". Nature Materials 6, 424-428 (2007).
    80. 張源炘, "以分子梳結合軟微影技術製備大面積金屬奈米線陣列及奈米流道", (2008).
    81. Cheng, J.J., Chang, Y.H., Huang, W.Y. & Juang, Y.J. "Effect of Solution Viscosity on Generating Long DNA Nanostrands Array via Patterned Molecular Combing". Applied Physics Letters.
    82. Gennes, P.-G.d., Brochard-Wyart, F. & Quere, D., "Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves", (2003).
    83. Perkins, T.T., Smith, D.E. & Chu, S. "Single polymer dynamics in an elongational flow". Science 276, 2016-2021 (1997).
    84. Segur, J. & Oberstar, H. "Viscosity of glycerin and its aqueous solutions". Industrial & Engineering Chemistry 43, 2117-2120 (1951).
    85. Flink, S., van Veggel, F.C.J.M. & Reinhoudt, D.N. "Functionalization of self-assembled monolayers on glass and oxidized silicon wafers by surface reactions". Journal of Physical Organic Chemistry 14, 407-415 (2001).

    86. Bezanilla, M., Manne, S., Laney, D.E., Lyubchenko, Y.L. & Hansma, H.G. "Adsorption of DNA to Mica, Silylated Mice, and Minerals - Characterization by Atomic-Force Microscopy". Langmuir 11, 655-659 (1995).
    87. Umemura, K., Ishikawa, M. & Kuroda, R. "Controlled immobilization of DNA molecules using chemical modification of mica surfaces for atomic force microscopy: Characterization in air". Analytical Biochemistry 290, 232-237 (2001).
    88. Balladur, V., Theretz, A. & Mandrand, B. "Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers". Journal of Colloid and Interface Science 194, 408-418 (1997).
    89. Crampton, N., Bonass, W.A., Kirkham, J. & Thomson, N.H. "Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA". Langmuir 21, 7884-7891 (2005).
    90. Arslan, G., Ozmen, M., Gunduz, B., Zhang, X.L. & Ersroz, M. "Surface modification of glass beads with an aminosilane monolayer". Turkish Journal of Chemistry 30, 203-210 (2006).
    91. Lange, S.A., Benes, V., Kern, D.P., Horber, J.K.H. & Bernard, A. "Microcontact printing of DNA molecules". Analytical Chemistry 76, 1641-1647 (2004).
    92. Schmid, H. & Michel, B. "Siloxane polymers for high-resolution, high-accuracy soft lithography". Macromolecules 33, 3042-3049 (2000).
    93. Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E. & Whitesides, G.M. "Improved pattern transfer in soft lithography using composite stamps". Langmuir 18, 5314-5320 (2002).
    94. Gates, B.D. & Whitesides, G.M. "Replication of vertical features smaller than 2 nm by soft lithography". Journal of the American Chemical Society 125, 14986-14987 (2003).
    95. Hua, F. et al. "Polymer imprint lithography with molecular-scale resolution". Nano Letters 4, 2467-2471 (2004).
    96. Hua, F. et al. "Processing dependent behavior of soft imprint lithography on the 1--10-nm scale". Ieee Transactions on Nanotechnology 5, 301-308 (2006).
    97. Galliano, A., Bistac, S. & Schultz, J. "Adhesion and friction of PDMS networks: molecular weight effects". Journal of Colloid and Interface Science 265, 372-379 (2003).

    98. Galliano, A., Bistac, S. & Schultz, J. "The role of free chains in adhesion and friction of poly(dimethylsiloxane) (PDMS) networks". Journal of Adhesion 79, 973-991 (2003).
    99. Hui, C.Y., Jagota, A., Lin, Y.Y. & Kramer, E.J. "Constraints on microcontact printing imposed by stamp deformation". Langmuir 18, 1394-1407 (2002).
    100. Hsia, K.J. et al. "Collapse of stamps for soft lithography due to interfacial adhesion". Applied Physics Letters 86, 3 (2005).
    101. Huang, Y.G.Y. et al. "Stamp collapse in soft lithography". Langmuir 21, 8058-8068 (2005).
    102. Pernodet, N. & Tinland, B. "Influence of lambda-DNA concentration on mobilities and dispersion coefficients during agarose gel electrophoresis". Biopolymers 42, 471-478 (1997).
    103. Smith, D.E., Perkins, T.T. & Chu, S. "Dynamical scaling of DNA diffusion coefficients". Macromolecules 29, 1372-1373 (1996).
    104. Online Materials Information Resource - MatWeb. http://www.matweb.com/index.aspx
    105. Deng, Z.X. & Mao, C.D. "Molecular lithography with DNA nanostructures". Angewandte Chemie-International Edition 43, 4068-4070 (2004).
    106. Yu, J. & Bulovic, V. "Micropatterning metal electrode of organic light emitting devices using rapid polydimethyl siloxane lift-off". Applied Physics Letters 91, - (2007).
    107. Atmaja, B., Frommer, J. & Scott, J.C. "Atomically flat gold on elastomeric substrate". Langmuir 22, 4734-4740 (2006).
    108. Schuy, S. & Janshoff, A. "Microstructuring of phospholipid bilayers on gold surfaces by micromolding in capillaries". Journal of Colloid and Interface Science 295, 93-99 (2006).
    109. Kim, J., Bae, S.H. & Lim, H.G. "Micro transfer printing on cellulose electro-active paper". Smart Materials & Structures 15, 889-892 (2006).
    110. Loo, Y.L., Willett, R.L., Baldwin, K.W. & Rogers, J.A. "Interfacial chemistries for nanoscale transfer printing". Journal of the American Chemical Society 124, 7654-7655 (2002).
    111. Liu, Y.Y. et al. "Ionic effect on combing of single DNA molecules. and observation of their force-induced melting by fluorescence microscopy". Journal of Chemical Physics 121, 4302-4309 (2004).
    112. Otobe, K. & Ohtani, T. "Behavior of DNA fibers stretched by precise meniscus motion control". Nucleic Acids Research 29, art. no.-e109 (2001).

    下載圖示 校內:2012-06-25公開
    校外:2012-06-25公開
    QR CODE