| 研究生: |
陳威任 Chen, Wei-Ren |
|---|---|
| 論文名稱: |
MDCK細胞之於微柱陣列上的力學行為探討 Study on the Mechanical Behavior of Madin-Darby Canine Kidney (MDCK) Epithelial Cell by Micro-Pillars Array |
| 指導教授: |
張憲彰
Chang, Hsien-Chang 張志涵 Chang, Chih-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | MDCK 、細胞力學 、牽引力 、彈性係數 、滅菌處理 、微柱陣列結構 |
| 外文關鍵詞: | traction force, cell mechanics, MDCK, MPAs, spring constant, sterilization |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
體外細胞培養的生理活性可從其貼附、延長、生長、移動等生理特性來加以評估,然一般將細胞培養在L-Lysine修飾之Petri dish上,細胞底下所貼附的平面堅硬環境不易量化其生理特性的變化。為此,本研究以聚二甲基矽氧烷(PDMS)為基材,透過微機電製程製作出具彈性之微柱陣列結構(MPAs),並以此具彈性的立體環境頂端上進行細胞培養。在細胞培養時細胞移動,特別是於其爬行過程中所產生的牽引力會使微柱起微小的形變,此可經由影像技術軟體求得與力學公式量化細胞力學。單一微柱的K值是由微懸臂探針固定於玻璃棒上,並藉微小操作儀來控制位移,對微柱上端之中心施予一已知力量,可藉由微柱之形變量量測得知,而細胞牽扯微柱後所產生的位移改變量,乃由顯微鏡觀察並配合影像軟體求得。當細胞貼附於MPAs後,約經5 hrs,部分的微柱受細胞牽引會有明顯之形變,於是細胞四周各部位之牽引力即可被量化得知。相較Autoclave與酒精滅菌處理方法,由於UV光照射法(254 nm)來進行滅菌處理後之PDMS的彈性係數改變量最少(8%),因此,本研究採UV光照射法來進行MPAs滅菌。將滅菌處理後的MPAs,浸於DMEM培養液中進行細胞培養,微柱表面經過collagen修飾後,有助細胞攤開並生長於微柱頂端,可提高攤開面積1.5 ~ 2倍。最後,將MDCK細胞、MDCK DDR DN細胞與MDCK DDR 1b細胞培養於微柱上,經過24小時培養後,於顯微鏡下拍攝觀察,紀錄2小時的力量表現,發現其牽引力分別為4~14, 2~9, 4~8 nN。本研究已初步可供立體式擬自然生長下細胞牽扯力量化之探求,相信在更多的經驗累積,此細胞力學量測平台應可發展成另一評估細胞相關反應所造成的微力學之生理應答上。
In order to evaluate the traction force of the cultured cell, the elastic micro-pillars array system (MPAs) was fabricated with poly-dimethylsiloxane (PDMS) by Micro-Electro-Mechanical- System technology. The MPAs provides a non-rigid 3D environment for the attachment, growth, spread of the cell. The purpose of the MPAs is to quantify the cell traction force during cell culture. The specific aim of this study is to evaluate the effects of layout parameters and manufacturing process of various MPAs designs on the cellular force quantification. The traction force evaluation was based on the Beam deflection theory, therefore the spring constant and the displacement of a signle pillar must be evaluated. Two approaches were used to determine the deflection constant. First, the Young’s modulus was measured by dynamic mechanical analyzer; the Young’s modulus was then used to calculate the deflection constant by appling the known geometry of snigle pillar. Second, micro-cantilever was pressed on the end of the single pillar. From the known spring constant of cantilever and deflection of pillar after loading the deflection constant of pillar can be measured. To evaluate the sterilization effect on the mechanical property of the pillar, three sterilization methods were used including autoclave at 121C, 75% ethanol immersion, and UV light (254 nm) radiation. The spring constants demonstrated a changing of ±25%, ±16%, and ±8% after sterilization, respectively. The MDCK cells were cultured in the DMEM medium by MPAs. After 24 hrs culture, recording to the MDCK, MDCK DDR DN, MDCK DDR 1b cells for 2 hrs by microscope that the traction force were about 4 ~ 14, 2 ~ 9, 4 ~ 8 nN, respectively. The spreading area of the cells can be enhancing about 1.5 ~ 2 folds after collagen coating on the MPAs. In conclusion, the displacement of the micro-pillars caused by the cell traction forces could be measured by this system. This system provides a convenient measurement platform for cell mechanics environment.
1.C. C. Wu, S. J. Ding, Y. H. Wang, M. J. Tang, H. C. Chang,“Mechanical properties of collagen gels derived from rats of different ages related to cell apoptosis”, J. Biomater. Sci. Polymer Edn. , 2005, 16, 1261-1275.
2.K. Burridge, K. Fath, T. Kelly, G. Nuckolls, C. Turner, “Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton”, Annu. Rev. Cell Biol 1988, 4, 487-525.
3.B. M. Jokusch, P. Bubeck, K. Giehl, M. Kroemker, J. Moschner, M. Rothkegel, M. Rudiger, K. Schluter, G. Stanke, and J. Winkler,. “The molecular architecture of focal adhesions”, Ann. Rev. Cell Dev. Biol. 1995, 11, 379-416.
4.D. R. Critchley,.“Focal adhesions: the cytoskeletal connection”, Curr Opin Cell Biol 2000, 12, 133-139.
5.A. K. Harris, P. Wild, D. Stopak, “Silicon rubber substrates: A new wrinkle in the study of cell locomotion”, Science 1980, 208, 177–179.
6.D. Riveline, E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, A. D. Bershadsky, “Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an mDia1-dependent and ROCK-independent Mechanism”, J. Cell Biol. 2001, 153, 1175–1186.
7.R. O. Hynes, “Integrins: Versatility, modulation, and signaling in cell adhesion”, Cell 1992, 69, 11-25.
8.A. Richardson, J. T. Parsons, “Signal. transduction through integrin:
a central role for focal adhesion kinase”, Bioessays 1995, 17, 229-236.
9.M. A. Schwartz, M. D. Schaller, M. H. Ginsberg, “Integrins: emerging paradigms of signal transduction”, Ann. Rev. Cell Dev. Biol. 1995, 11, 549-599.
10.M. A. Schwartz, M. H. Ginsberg, “Networks and cross talk: integrin singaling spreads”, Nat. Cell Biol. 2002, 4, E65-E68.
11.D. A. Lauffenburger, A. F. Horwitz, “Cell Migration: A Physically Integrated Molecular Process”, Cell 1996, 84, 359-369.
12.D. Choquet, D. P. Felsenfeld, M. P. Sheetz, “Extracellular Matrix Rigidity Causes Strengthening of Integrin-Cytoskeletal Linkages”, Cell 1997, 88, 39-48.
13.N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, A. Bershadsky, L. Addadi, B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates”, Nat. Cell Biol. 2001, 3, 466-472.
14.K. Burton, D. L. Taylor, “Traction forces of cytokinesis measured with optically modified elastic substrate”, Nature. 1997, 385, 450-454.
15.J. Lee, M. Leonard, T. Oliver, A. Ishihara, K. Jacobson,“Traction forces generated by locomoting keratocytes”, J. Cell Biol. 1994, 127, 1957-1964.
16.R. J. Pelham, Jr., Y. Wang, “Cell locomotion and focal adhesions are regulated by substrate flexibility”, Proc. Natl. Acad. Sci. 1997, 94, 13661-13665.
17.C. M. Lo, H. B. Wang, M. Dembo, Y. L. Wang, “Cell movement is guided by the rigidity of the substrate”, Biophys. J. 2000, 79, 144-152.
18.K. Burridge, M. Chrzanowska- Wodnicka, “Focal adhesions, contractility, and signaling”, Annu. Rev. Cell. Dev. Biol. 1996, 12, 463-519.
19.C. G. Galbraith, M. P. Sheetz, “A micromachined device provides a. new bend on fibroblast traction forces”, Proc. Natl Acad. Sci. 1997, 94, 9114-9118.
20.K. A. Beningo, Y. L. Wang, “Flexible substrata for the detection of cellular traction forces”, Trends Cell Biol. 2002, 12, 79-84.
21.Y. Cohen, O. Ramon, I. J. Kopelman, S. Mizrahi, “Characterization of inhomogeneous polyacrylamide hydrogels”, J. Polym. Sci. B 1992, 30, 1055-1067.
22.M. C. Geoffrey, “The Cell: A Molecular Approach”, ASM Press, Harvard Medical School 1997, pp. 1-673.
23.A. Ashkin, “Acceleration and trapping of particles by radiation pressure”, Phys Rev Lett. 1970, 24, 156-159.
24.A. Ashkin, “Applications of laser radiation pressure”, Science. 1980, 210, 1081-1088.
25.R. Skalak, P. R. Zarda, K. M. Jan, S. Chien, “Mechanics of rouleau formation”, Biophys. J. 1981, 35, 771-781.
26.E. A. Evans, “Detailed mechanics of membrane-membrane adhesion and separation”, Biophys. J. 1985, 48, 175-183.
27.G. I. Bell, M. Demo, P. Bongrand, “Competition between nonspecific repulsion and specific”, Biophys. J. 1984, 45, 1051-1064.
28.G. I. Bell, “Models for the specific adhesion of cells to cells”, Science 1978, 200, 618-627.
29.D. A. Hammer, D. A. Lauffenburger, “A Dynamical Model for Receptor-mediated cell adhesion to surfaces”, Biophys. J. 1987, 52, 475-487.
30.G. W. Francis, L. R. Fisher, R. A. Gamble, D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method”, J. Cell. Sci. 1987, 87, 519-523.
31.K.A. Athanasiou, C. M. Agrawal, R. G. LeBaron, “Development of the cytodetachment technique to quantify mechanical adhesiveness of the signal cell”, Biomaterials 1999, 20, 2405-2415.
32.V. H. Barocas, R. T. Tranquillo, “The fibroblast-populated collagen microsphere assay of cell traction”, J. Biomech. Eng. 1995, 117, 161-170.
33.M., J. Djabourov, F. Lechaire, “Structure and rheology of gelatin
and collagen gels”, Biorheology 1993, 30, 191-205.
34.S. Hsu, A. M. Jamieson, J. Blackwell, “Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system”, Biorheology 1994, 31, 21-36.
35.D. M. Knapp, V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold, R. T. Tranquillo, “Rheology of reconstituted Type I collagen gel”, J. Rheol. 1997, 41, 971-993.
36.G. Martin, R. Andreas, S. Martin, D. Johannsmann, “Viscoelastic spectra of soft polymer interfaces”, Surf. Interface Anal. 1999, 27, 572.
37.G. T. Charras, P. P. Lehenkari, M. A. Horton, “Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions”, Ultramicroscopy 2001, 86, 85-95.
38.B. Fabry, N. Geoffrey, R.D. Maksym, J. P. Hubmayr, J. J. Butler, “Implications of heterogenous bead behavior on cell mechanical properties measured with magnetic twisting cytometry”, Journal of Magnetism and Magnetic Material 1999, 194, 120-125.
39.B. Fabry, N. Geoffrey, R.D. Maksym, A. Stephanie, P. E. Shore, A. R. Moore, J. R. Panetteri, P. B. James, J. Jeffrey, G. J. Fredber, “Signal Transduction in Smooth Muscle: Selected Contribution: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells”, J. Appl. Physiol. 2001, 91, 986-994.
40.R. J. Wendy, H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, F. Guilak, “Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage”, J. Biomech. 1999, 32, 119-127.
41.K. J. Van Vliet, G. Bao, S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules”, Acta Materialia 2003, 51, 5881-5905.
42.K. Burton, D. L. Taylor, “Traction forces of cytokinesis measured with optically modified elastic substrata”, Nature 1997, 385, 450-454.
43.S. Petronis, J. Gold, B. Kasemo, “Microfabricated force-sensitive elastic substrates for investigation of mechanical cell-substrate interactions”, Journal of Micromechanics and Microengineering 2003, 13, 900-913.
44.O. D. Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, “Force mapping in epithelial cell migration”, Proc. Natl. Acad. Sci. 2005, 105, 2390-2395.
45.J. L. Tan, T. Joe, M. P. Dana, S. G. Darren, B. Kiran, S. C. Christopher, “Cells lying on a bed of microneedles an approach to isolate mechanical force”, Proc. Natl. Acad. Sci. 2003, 100, 1484-1489.
46.R. S. Kane, S. Takayama, E. Ostuni, D. Ingber, G. M. Whitesides, “Patterning proteins and cells using soft lithography”, Biomaterials 1999, 20, 2363-2376.
47.N. Wang, E. Ostuni, G. M. Whitesides, D. E. Ingber, “Micropatterning tractional forces in living cells”, Cell Motil. Cytoskeleton. 2002, 52, 97-106.
48.H. B. Wang, “Substrate flexibility regulates growth and apoptosis of normal but not transformed cells”, Am J. Physiol cell Physiol, 2000, 279, C1345-C1350.
49.C. Z. Wang, Y. M. Hsu, M. J. Tang, “Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel”, J. Cell Physiol., 2005, 203, 295-304.
50.K. Shimazu, S. Toda, H. Sugihara, “Morphogenesis of MDCK cells in a collagen gel matrix culture under stromal adipocyte-epithelial cell interaction”, Cell Biology, 2001, 60, 568-578.
51.C. S. Chen, M. M., S. Huang, G. M. Whitesides, D. E. Ingber, “Geometric control of cell life and death”, Science, 1997, 276, 1425-1428.
52.V. Vogel, M. Sheetz, “Local force and geometry sensing regulate cell functions”, Naturereview|Molecular Cell Biology, 2006, 7, 265-275.
53.Y. Tanaka, K. Morishima, T. Shimizu, T. Kitamori, “Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars”, Lab on a Chip, 2006, 6, 230-235.
54.D. F. Balkovetz, “Evidence that hepayocyte growth factor abrogates contact inhibition of mitosis in Madin-Darby Canine Kidney cell monolayers”, Life Sciences, 1999, 64, 1393-1401.
55.D. F. Balkovetz, “Hepatocyte growth factor and Madin-Darby Canine Kindey cells: in vitro models of epithelial cell movement and morphogenesis”, Microscopy Research and Technique, 1998, 43, 456-463.
56.C. A. Lemmon, N. J. Sniadecki, S. A. Ruiz, J.L. Tan, L. H. Romer, C. S. Chen, “Shear force at the cell-matrix interface: enhance analysis for microfabricated post array detectors”, MCB, 2005, 2, 1-16.