簡易檢索 / 詳目顯示

研究生: 歐維特
Víctor Raúl, Osorio Sandoval
論文名稱: ExerBei : 數位長者運動教練
ExerBei : Low-Cost Exercise System for Older Adults
指導教授: 簡聖芬
Chien, Sheng-Fen
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 創意產業設計研究所
Institute of Creative Industries Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 81
中文關鍵詞: 體感遊戲高齡者姿勢估計以使用者為中心的設計身體活動
外文關鍵詞: exergaming, older adults, pose estimation, user-centered design, physical activity
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人口高齡化是一項影響全球的現象,老年族群的健康狀況是研究人員關注的 核心議題。為了解決傳統體感遊戲(Exergames)在成本、設置複雜性及易用性方面的 障礙,本論文詳細闡述了「Exergame Suite」的設計、實施與評估。這是一個創新 的網路應用套件,旨在利用標準的網路技術,為老年人提供引人入勝的居家體育活 動。
    本專案遵循以使用者為中心的方法,首先基於激勵理論進行概念設計,隨後 進行了包含三款遊戲(旗幟、觸碰、形狀)的套件的技術實施,該系統利用即時2D 姿勢估計(p5.js、搭載MoveNet模型的ml5.js)。我們對四名老年參與者(N=4) 進行了定性的Beta測試,以評估初始原型版本的可用性。
    透過對使用者研究結果的綜合分析,我們獲得了關於可玩性、身體舒適度與認知負荷的關鍵洞見。本研究驗證了迭代式、由使用者回饋所驅動的方法對於改良遊戲至關重要。本研究的主要貢獻是提出了一套針對老年人、基於網路攝影機的體感遊戲的四項衍生設計準則。這些準則聚焦於管理認知負荷、個人化遊戲空間、優先考慮容錯機制及確保回饋清晰度,為研究人員和開發者提供了可行的建議。本專案展示了此技術方法作為一種可擴展、低成本的方案,在促進健康老化方面的潛力。

    Population aging is a global phenomenon, and the health of older adults is a primary concern. To address barriers of cost, setup, and usability in traditional exergames, this thesis details the design, implementation, and evaluation of the "Exergame Suite," a novel web-based platform that leverages standard web technologies to provide engaging physical activity for older adults.
    The project followed a user-centered methodology, beginning with a conceptual design grounded in motivational theory, followed by the technical implementation of a three-game suite (Flags, Reach, Shapes) utilizing real-time 2D pose estimation (p5.js, ml5.js with MoveNet). A qualitative beta-test with four older adult participants (N=4) was conducted to evaluate the initial prototype's usability.
    An integrative analysis of the user study findings revealed key insights into playability, physical comfort, and cognitive load. The study validates that an iterative, user-informed approach is critical for refining gameplay. The primary contribution of this research is a set of four derived design guidelines for webcam-based exergames for older adults. These guidelines, which focus on managing cognitive load, personalizing the play space, prioritizing forgiveness in mechanics, and ensuring feedback clarity, provide actionable recommendations for researchers and developers. The project demonstrates the potential of this technological approach as a scalable, low-cost alternative to promote healthy aging.

    Abstract i 摘要 ii TABLE OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES vii CHAPTER 1: INTRODUCTION 1 1.1. Background: The Aging Population and the Importance of Physical Activity 1 1.2. Problem Statement and Research Scope 3 1.3. Research Methodology 5 1.3.1. Overall Approach: Iterative Development and Participatory Design 6 1.3.2. User Study: Beta-Testing the Exergame Suite 6 1.4. Thesis Organization 7 CHAPTER 2: LITERATURE REVIEW 9 2.1. Mobility and Older Adults 9 2.2. Exercising, Rehabilitation Therapy 9 2.3. Exergames for Older Adults 10 2.3.1. Overview and Typologies of Exergames 10 2.3.2. Documented Benefits and Limitations of Exergames for Older Adults 13 2.3.3. Motivation in Exergaming 14 2.3.4. Design Guidelines for Exergames Aimed at Older Adults 15 2.4. Motion Capture Technologies for Exergaming 16 2.4.1. Overview of MoCap: Marker-Based vs. Markerless Approaches 17 2.4.2. Depth Sensors in Exergame Research 17 2.4.3. Webcam-Based 2D Pose Estimation: Aiming for Accessibility 18 2.4.3.1. Prominent Models and Enabling Libraries 19 2.4.3.2. Advantages and Limitations for Exergaming with Older Adults 20 2.5. Tools for Rapid Prototyping and User-Centered Design 21 2.6. Summary and Lessons Learned 21 2.7. Synthesis: A Human-Centered Gerontechnology Perspective 22 CHAPTER 3: REQUIREMENT ANALYSIS AND CONCEPTUAL DESIGN 24 3.1. Requirement Analysis 24 3.1.1. Motivational Requirements: Applying Self-Determination Theory 24 3.1.2. Physical and Safety Requirements 25 3.2. Conceptual System Design 25 3.2.1. System Architecture Concept 26 3.2.2. Core Functional Concepts 26 3.2.3. UI Design Principles 26 CHAPTER 4: IMPLEMENTATION AND REDESIGN CYCLES 28 4.1. Technical Implementation (v0.1) 28 4.1.1. Core Technologies Employed 28 4.1.2. Software Components (Files and Their Roles) 29 4.1.3. Data Flow (conceptual) 30 4.1.4. Key System-Wide Functionality 31 4.1.5. The Implemented Exergame Modules (v0.1) 31 4.1.6. User Interface (UI) Design (v0.1) 34 4.2. Implementation and Redesign Cycles 35 4.2.1. Technology Pivot: From Python/OpenCV to Web Technologies 35 4.2.2. Justification of Design Methodologies 36 4.3. ExerBei 2.0: The Refined System 36 CHAPTER 5: USER STUDY: METHOD AND FINDINGS 38 5.1. Experiment Design 38 5.2. Findings 39 5.2.1. Qualitative Findings from Thematic Analysis 39 5.2.2. Quantitative Findings 40 5.2.3. Integrative Analysis 41 5.3. Derived Design Guidelines for Webcam-Based Exergames 42 CHAPTER 6: DISCUSSION AND CONCLUSION 44 6.1. Discussion 44 6.1.1. Relating Findings to Existing Literature 44 6.2. Contributions 45 6.3. Limitations of the Research 46 6.4. Implications and Future Directions 46 6.5. Conclusion 48 REFERENCES 49 Appendix A: Game Feature Comparison 55 Appendix B: Interviews Framework 57 Appendix C: User Performance Metrics 60 Appendix D: Individual & Average Scores per Game 64 Appendix E: System Evolution and Iterative Design (Accessibility Features) 65

    Administration for Community Living. (2023). 2023 Profile of older Americans. U.S. Department of Health and Human Services. https://acl.gov/sites/default/files/Profile%20of%20OA/2023%20Profile%20of%20Older%20Americans/2023ProfileOlderAmericans-Final.pdf

    Anderson, G. F., & Hussey, P. S. (2000). Population aging: A comparison among industrialized countries. Health Affairs, 19(3), 191–203. https://doi.org/10.1377/hlthaff.19.3.191

    Angulo, J., El Assar, M., Álvarez-Bustos, A., & Rodríguez-Mañas, L. (2020). Physical Activity and Exercise: Strategies to Manage Frailty. Redox Biology, 35, 101513. https://doi.org/10.1016/j.redox.2020.101513

    Anthony, K., Robinson, K., Logan, P., Gordon, A. L., Harwood, R. H., & Masud, T. (2013). Chair-based exercises for frail older people: A systematic review. BioMed Research International, 2013, 309506. https://doi.org/10.1155/2013/309506

    Arcia, A., Stonbraker, S., Mangal, S., & Lor, M. (2024). A Practical Guide to Participatory Design Sessions for the Development of Information Visualizations: Tutorial. Journal of Participatory Medicine, 16, e64508. https://doi.org/10.2196/64508

    Billis, A. S., Konstantinidis, E. I., Mouzakidis, C., Tsolaki, M. N., Pappas, C., & Bamidis, P. D. (2010). A game-like interface for training seniors' dynamic balance and coordination. In IFMBE Proceedings (Vol. 29, pp. 691–694). https://doi.org/10.1007/978-3-642-13039-7_174

    Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa

    Brox, E., & Hernandez, J. E. G. (2011). Exergames for elderly: Social exergames to persuade seniors to increase physical activity. In 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (pp. 546-549). https://doi.org/10.4108/icst.pervasivehealth.2011.246049

    Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2019). OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–186. https://doi.org/10.1109/TPAMI.2019.2929257

    Cornejo, R., Hernández, D., Favela, J., & Tentori, M. (2012). Persuading older adults to socialize and exercise through ambient games. In 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (pp. 215–218). https://doi.org/10.4108/icst.pervasivehealth.2012.248704

    Daley, M. J., & Spinks, W. L. (2000). Exercise, mobility and aging. Sports Medicine, 29(1), 1–12. https://doi.org/10.2165/00007256-200029010-00001

    Fisk, A. D., Rogers, W. A., Charness, N., Czaja, S. J., & Sharit, J. (2009). Designing for Older Adults: Principles and Creative Human Factors Approaches. (2 ed.) (Human Factors and Aging Series). CRC Press. https://doi.org/10.1201/9781420080681

    Galantino, M. L., Green, L., Decesari, J. A., Mackain, N. A., Rinaldi, S. M., Stevens, M. E., Mao, J. J. (2012). Safety and feasibility of modified chair-yoga on functional outcome among elderly at risk for falls. International Journal of Yoga, 5(2), 146-150. https://doi.org/10.4103/0973-6131.98242

    Gerling, K., Livingston, I., Nacke, L., & Mandryk, R. (2012). Full-body motion-based game interaction for older adults. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems - CHI '12 (pp. 1873-1882). https://doi.org/10.1145/2207676.2208324

    Gerling, K., & Mandryk, R. (2014). Custom-designed motion-based games for older adults: A review of literature in human-computer interaction. Gerontechnology, 12(2), 68-80. https://doi.org/10.4017/gt.2013.12.2.001.00

    Kamm, C. P., Kueng, R., & Blättler, R. (2024). Development of a new immersive virtual reality (VR) headset-based dexterity training for patients with multiple sclerosis: Clinical and technical aspects. Technology and Health Care, 32, 1067–1078. https://doi.org/10.3233/THC-230541

    Koivisto, J., & Hamari, J. (2019). Gamification of physical activity: A systematic literature review of comparison studies. GamiFIN, 106-117

    Krishnan, C., Washabaugh, E. P., & Seetharaman, Y. (2015). A low cost real-time motion tracking approach using webcam technology. Journal of Biomechanics, 48(3), 544–548. https://doi.org/10.1016/j.jbiomech.2014.11.048

    Larsen, L. H., Schou, L., Lund, H. H., & Langberg, H. (2013). The Physical Effect of Exergames in Healthy Elderly—A Systematic Review. Games for Health Journal, 2(4), 205–212. https://doi.org/10.1089/g4h.2013.0036

    Leong, I. F., Fang, J. J., & Tsai, M. J. (2007). Automatic body feature extraction from a marker-less scanned human body. CAD Computer Aided Design, 39(7), 568-582. https://doi.org/10.1016/j.cad.2007.03.003

    Leung, K. K., Carr, F. M., Kennedy, M., Russell, M. J., Sari, Z., Triscott, J. A., & Korownyk, C. (2023). Effectiveness of telerehabilitation and home-based falls prevention programs for community-dwelling older adults: a systematic review and meta-analysis protocol. BMJ Open, 13(4), e069543. https://doi.org/10.1136/bmjopen-2022-069543

    Li, Y., Muñoz, J., Mehrabi, S., Middleton, L., Cao, S., & Boger, J. (2020). Multidisciplinary Iterative Design of Exergames (MIDE): A Framework for Supporting the Design, Development, and Evaluation of Exergames for Health. In X. Fang (Ed.), HCI in Games. HCII 2020. Lecture Notes in Computer Science, vol 12211. Springer, Cham. https://doi.org/10.1007/978-3-030-50164-8_9

    Lloréns, R., Alcañiz, M., Colomer, C., Navarro, M. D., & Baynat, S. (2012). Balance Recovery Through Virtual Stepping Exercises Using Kinect Skeleton Tracking: A Follow-Up Study With Chronic Stroke Patients. Studies in Health Technology and Informatics. IOS Press. 108-112. https://doi.org/10.3233/978-1-61499-121-2-108

    Means, K. M., Rodell, D. E., & O'Sullivan, P. S. (2005). Balance, mobility, and falls among community-dwelling elderly persons: effects of a rehabilitation exercise program. American journal of physical medicine & rehabilitation, 84(4), 238–250. https://doi.org/10.1097/01.phm.0000151944.22116.5a

    Mishra, A. K., Sahoo, D., Shubhankar, I., & Samal, I. (2024). YogaSiddhi: AI-Powered Pose Analysis using MoveNet for Yoga Refinement. International Journal of Computer Applications, 186(8), 33–39. http://dx.doi.org/10.5120/ijca2024923427

    Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2-3), 90–126. https://doi.org/10.1016/j.cviu.2006.08.002

    Nawaz, A., Skjæret, N., Helbostad, J. L., Vereijken, B., Boulton, E., & Svanaes, D. (2016). Usability and acceptability of balance exergames in older adults: A scoping review. Health Informatics Journal, 22(4), 911-931. https://doi.org/10.1177/1460458215598638

    Nikitina, S., Didino, D., Baez, M., & Casati, F. (2017). Feasibility of online tablet-based group-exercising among older adults in Siberia: Findings from two pilot trials. JMIR mHealth and uHealth, 5(10), e147. https://doi.org/10.2196/mhealth.7531

    Phillips, E. M., Schneider, J. C., & Mercer, G. R. (2004). Motivating elders to initiate and maintain exercise. Archives of physical medicine and rehabilitation, 85(7 Suppl 3), S52–S59. https://doi.org/10.1016/j.apmr.2004.03.012

    Picerno, P., Cereatti, A., & Cappozzo, A. (2008). Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait and Posture, 28(4), 588–595. https://doi.org/10.1016/j.gaitpost.2008.04.003

    Poppe, R. (2007). Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1-2), 4–18. https://doi.org/10.1016/j.cviu.2006.10.016

    Rantakokko, M., Portegijs, E., Viljanen, A., Iwarsson, S., & Rantanen, T. (2013). Life-space mobility and quality of life in community-dwelling older people. Journal of the American Geriatrics Society, 61(10), 1830-1832. https://doi.org/10.1111/jgs.12473

    Rantanen, T. (2013). Promoting mobility in older people. Journal of Preventive Medicine and Public Health, 46(Suppl 1), S50–S54. https://doi.org/10.3961/jpmph.2013.46.S.S50

    Roy, J. S. S., Neumann, W. P., & Fels, D. I. (2016). User Centered Design Methods and Their Application in Older Adult Community. In Human-Computer Interaction: Part I (pp. 462–472). Springer. https://doi.org/10.1007/978-3-319-40349-6_44

    Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. https://doi.org/10.1037/0003-066X.55.1.68

    Rytterström, P., Strömberg, A., Jaarsma, T., & Klompstra, L. (2024). Exergaming to Increase Physical Activity in Older Adults: Feasibility and Practical Implications. Current heart failure reports, 21(4), 439–459. https://doi.org/10.1007/s11897-024-00675-9

    Saini, S., Rambli, D. R. A., Sulaiman, S., Zakaria, M. N., & Mohd Shukri, S. R. (2012). A low-cost game framework for a home-based stroke rehabilitation system. 2012 International Conference on Computer and Information Science. https://doi.org/10.1109/ICCISci.2012.6297212

    Sato, K., Kuroki, K., Saiki, S., & Nagatomi, R. (2015). Improving Walking, Muscle Strength, and Balance in the Elderly with an Exergame Using Kinect: A Randomized Controlled Trial. Games for Health Journal, 4(3), 161–167. https://doi.org/10.1089/g4h.2014.0057

    Schuler, D.C., & Namioka, A. (1993). Participatory Design: Principles and Practices. https://doi.org/10.1201/9780203744338

    Skjæret, N., Nawaz, A., Morat, T., Schoene, D., Helbostad, J. L., & Vereijken, B. (2016). Exercise and rehabilitation delivered through exergames in older adults: An integrative review of technologies, safety and efficacy. International Journal of Medical Informatics, 85(1), 1-16. https://doi.org/10.1016/j.ijmedinf.2015.10.008

    United Nations. (2023). World Social Report 2023: Leaving No One Behind in an
    Ageing World. Department of Economic and Social Affairs.

    Valenzuela, T., Okubo, Y., Woodbury, A., Lord, S. R., & Delbaere, K. (2018). Adherence to Technology-Based Exercise Programs in Older Adults: A Systematic Review. Journal of Geriatric Physical Therapy, 41(1), 49–61. https://doi.org/10.1519/JPT.0000000000000095

    Webster, D., & Celik, O. (2014). Systematic review of Kinect applications in elderly care and stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 11(1), 108. https://doi.org/10.1186/1743-0003-11-108

    Xiao, Z., Wang, C., Ding, T., Shen, X., Li, X., & Li, D. (2025). Limb movement detection and analysis based on visual recognition of human posture. Discover Artificial Intelligence, 5(27). https://doi.org/10.1007/s44163-025-00246-4

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE