| 研究生: |
林彥宏 Lin, Yan-Hong |
|---|---|
| 論文名稱: |
五軸虛擬工具機組裝誤差之分析與補償系統發展 Development of the Assembly Error Analysis and Compensation System for Five-Axis Virtual Machine Tools |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 五軸工具機 、組裝誤差分析 、誤差補償 、虛擬工具機 |
| 外文關鍵詞: | Five-Axis Machine Tools, Assembly Error Analysis, Error Compensation, Virtual machine tool |
| 相關次數: | 點閱:210 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用五軸工具機可滿足加工航太、汽車與鑄造產業中,具高精度且形狀複雜零件之需求。雖然五軸工具機具備提升加工效率,減低生產成本以及縮短產品上市時間等優點;然而,相較於一般三軸工具機多了另外兩旋轉軸,亦增加了組裝誤差項。
由於以往有關五軸工具機之組裝誤差研究缺乏針對一般化構形進行探討,故其研究成果較難應用於不同構形工具機之研究。本論文針對靜態誤差中的組裝誤差進行分析,所提出的方法論可應用於一般化正交型五軸工具機。透過正逆向運動學,建立考慮組裝誤差項之五軸工具機體積誤差數學模式,藉以分析組裝誤差項對刀尖點位置誤差之影響。本論文亦針對線上量測設計一組量測位置,透過線上量測探針取得誤差辨識所需之量測資料。本論文採用之量測方法由於不受限於高階控制器與特殊量測儀器,因此有應用門檻較低的優勢。本論文應用線性最小平方估算法(Linear Least Square Estimation)進行誤差辨識,並探討誤差辨識會遭遇的線性獨立問題;誤差補償則透過一般化後處理方法進行。透過虛擬工具機模擬系統,驗證了補償後的數值控制檔可有效降低由組裝誤差造成的刀尖點位置誤差。本論文所提出對於誤差分析、誤差量測、誤差辨識與補償之方法論,由於考量了不同構形特性進行發展,故可與虛擬工具機模擬系統進行整合,使虛擬工具機模擬系統具備體積誤差分析之能力。
Many parts used in the aerospace, automobile, and casting industries have high-precision complex shapes for which five-axis machine tools are required. Although five-axis machine tools improve machining efficiency, reduce production expenses, and shorten time to market, their extra rotary axes lead to more error terms. Although a large number of studies have been conducted on geometric errors, little is known about the influence of assembly errors on volumetric error.
The results of existing studies are difficult to apply to diverse machine tools due to their lack of consideration of universal configurations. This dissertation focuses on analyzing assembly errors belonging to the category of static error. The proposed methodologies can be applied to general orthogonal configurations. The bi-directional kinematics for five-axis machine tools with assembly errors is developed to investigate the effect of assembly errors on position errors of tool center point (TCP). A series of inspection points are designed for on-line test with touch probe, by which the measurement data for error identification can be obtained. The benefit of adopting proposed inspection method is low practice threshold, because the high-end controllers and specialized inspection equipments are not necessary. Linear least squares estimation is used for identifying the individual error terms. And the linear dependence issue about error identification has also been explored. Then, the volumetric error is compensated by a universal post-processor. The simulation through virtual machine tool verifies that the TCP errors can be reduced substantially using the numerical control file with compensation for diverse configurations. An on-line test was implemented to verify the feasibility of the proposed assembly errors compensation scheme.
Proposed methodologies for error analysis, inspection, identification and compensation can be well integrated with virtual machine tool simulation system, because of universal configuration consideration for system development. Therefore, the virtual machine tool simulation system can have the capacity of assembly error analysis.
Bohez, E.L.J., “Compensating for systematic errors in 5-axis NC machining”, Computer- Aided Design, Vol.34, pp.391–403, 2002.
Bohez, E.L.J., B. Ariyajunya, C. Sinlapeecheewa, T.M.M Shein, D.T. Lap, and G. Belforte, “Systematic geometric rigid body error identification of 5-axis milling machines”, Computer-Aided Design, Vol.39, pp. 229-244. 2007.
Bringmann, B. and W. Knapp, “Model-based chase-the-ball calibration of a 5-axis machining center”, Annals of the CIRP, Vol.55:1, pp. 531–534, 2006.
Chen, J.S. and C.C. Ling, “Improving the machine accuracy through machine tool metrology and error correction”, International Journal of Advanced Manufacturing Technology, Vol.11:3, pp. 198-205, 1996.
Dassanayake, K.M.M., M. Tsutsumi, and A. Saito, “A strategy for identifying static deviations in universal spindle head type multi-axis machining centers”, International Journal of Machine Tools and Manufacture, vol. 46, pp. 1097-1106, 2006.
Fletcher, S., A.P. Longstaff, and A. Myers, “Compensation of thermal errors on a small vertical milling machine”, Sixth International Conference on Laser Metrology, Machine Tool, CMM and Robot Performance, pp.432–441, 2005.
Florussen, G.H.J., F.L.M. Delbressine, M.J.G. van de Molengraft, and P.H.J. Schellekens, “Assessing geometrical errors of multi-axis machines by three-dimensional length measurements”, Measurement, Vol.30, pp.241-255, 2001.
Ibaraki, S., C. Oyama, and H. Otsubo, “Construction of an error map of rotary axes on a five-axis machining center by static R-test”, International Journal of Machine Tools and Manufacture, Vol.51, pp.190-200, 2011.
Inasaki, I., K. Kishinami, S. Sakamoto, N. Sugimura, Y. Takeuchi, and F. Tanaka, “Shape Generation Theory of Machine Tools-Its Basis and Applications”, Yokendo, Tokyo, 1997 (in Japanese).
ISO 10791-1, Test Conditions for Machining Centres. Part 1, Geometric Tests for Machines with Horizontal Spindle and with Accessory Heads (Horizontal Z-Axis), ISO, Geneva, 1998.
ISO 10791-2, Test Conditions for Machining Centres. Part 2, Geometric Tests for Machines with Vertical Spindle or Universal Heads with Vertical Primary Rotary Axis (Vertical Z-Axis), 2001.
ISO 10791-3, Test Conditions for Machining Centres. Part 3, Geometric Tests for Machines with Integral Indexable or Continuous Universal Heads (Vertical Z-axis), ISO, Geneva, 1998.
ISO 10791-4, Test Conditions for Machining Centres. Part 4, Accuracy and Repeatability of Positioning of Linear and Rotary Axes, ISO, Geneva, 1998.
ISO 10791-6 (E), Test Conditions for Machining Centres- Accuracy of Feeds, Speeds and Interpolations, ISO, Geneva, 2001.
ISO 10791-8, Test Conditions for Machining Centres. Part 8, Evaluation of Contouring Performance in the Three Coordinate Planes, ISO, Geneva, 2001.
ISO 230-1, Test Code for Machine Tools. Part 1, Geometric Accuracy of Machines Operating Under No-Load or Finishing Conditions, ISO, Geneva, 1996.
ISO 230-2 (E), Test Code for Machine Tools. Part 2, Determination of Accuracy and Repeatability of Positioning of Numerically Controlled Axes, ISO, Geneva, 2006.
ISO 230-4, Test Code for Machine Tools. Part 4, Circular Tests for Numerically Controlled Machine Tools, ISO, Geneva, 2005.
ISO 230-6, Test Code for Machine Tools. Part 6, Determination of Positioning Accuracy on Body and Face Diagonals (Diagonal Displacement Tests), ISO, Geneva, 2002.
ISO 230-7 (E), Test Code for Machine Tools. Part 7, Geometric Accuracy of Axes of Rotation, ISO, Geneva, 2006.
Kiridena, V.S.B. and P.M. Ferreira, “Kinematic modeling of quasistatic errors of three-axis machining centers”, International Journal of Machine Tools and Manufacture, Vol. 34, No. 1, pp. 85-100, 1994.
Lee, R.S. and C.H. She, “Developing a postprocessor for three types of five-axis machine tools,” International Journal of Advanced Manufacturing Technology, Vol.13, No.9, pp.658-665, 1997.
Lei, W.T. and Y.Y. Hsu, “Accuracy enhancement of five-axis CNC machines through real-time error compensation”, International Journal of Machine Tools and Manufacture, Vol.43, pp.871-877, 2003.
Lei, W.T. and Y.Y. Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: Design and modeling; Part II: Errors estimation”, International Journal of Machine Tools and Manufacture, Vol. 42, pp.1153–62; 1163-70, 2002.
Lin, P.D. and K.F. Ehmann, “Direct volumetric error evaluation for multi-axis machines”, International Journal of Machine Tools and Manufacture, Vol.33, No.5: pp.675-693, 1993.
Lin, Y. and Y. Shen, “Modelling of five-axis machine tool metrology models using the matrix summation approach”, International Journal of Advanced Manufacturing Technology, vol. 21, pp. 243-248, 2003.
Longstaff, A.P., S. Fletcher, and A. Myers, “Volumetric compensation through a siemens controller”, Sixth International Conference on Laser Metrology, Machine Tool, CMM and Robot Performance, pp.422- 431. 2005.
Mahbubur, R.M.D., J. Heikkala, K. Lappalainen, and J.A. Karjalainen, “Positioning accuracy improvement in five-axis milling by post processing”, International Journal of Machine Tools and Manufacture, Vol. 37, No. 2, pp.223-236, 1997.
Mou, J., “A method of using neural networks and inverse kinematics for machine tools error estimation and correction”, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol.119, pp.247-254, 1997.
Paul, R.P., “Robot Manipulators: Mathematic, Programming and Control”, MIT press, Cambridge, Mass. 1981.
Ramesh, R., M.A. Mannan, and A.N. Poo, “Thermal error measurement and modelling in machine tools. Part I. Influence of varying operating conditions”. International Journal of Machine Tools and Manufacture, Vol.43, No.4, pp.391-404, 2003.
Ramesh, R., M.A. Mannan, A.N. Poo, and S.S. Keerthi, “Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network-support vector machine model”, International Journal of Machine Tools and Manufacture, Vol.43, No.4, pp.405-419, 2003.
Ramesh, R., M.A. Mannan, and A.N. Poo, “Error compensation in machine tools - a review: Part I: geometric, cutting-force induced and fixture-dependent errors”, International Journal of Machine Tools and Manufacture, vol. 40, pp. 1235-1256, 2000.
Reshetov, D.N. and V.T. Portman, “Accuracy of Machine Tools”, ASME Press, 1988.
Schulstchik, R., “The components of volumetric accuracy”, Annals of CIRP, Vol.25, No.1, pp.223-227, 1997.
Schwenke, H., W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines- An update”, CIRP Annals- Manufacturing Technology, Vol. 57, No. 2, pp. 660-675, 2008.
She, C.H. and R.S. Lee, “A postprocessor based on the kinematics model for general five-axis machine tools”, SME Journal of Manufacturing Processes, Vol. 2, No. 2, pp.131–141, 2000.
Soons, J.A., F.C. Theuws, and P.H. Schellekens, “Modeling the errors of multi-axis machines: A general methodology”, Precision Engineering, Vol.14, pp.5-19, 2000.
Tsutsumi, M. and A. Saito, “Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements”, International Journal of Machine Tools and Manufacture, Vol. 44, pp. 1333-1342, 2004.
Tsutsumi, M. and A. Saito, “Identification and compensation of systematic deviations particular to 5-axis machining centers”, International Journal of Machine Tools and Manufacture, Vol. 43, pp. 771-780, 2003.
Tsutsumi, M. and A. Saito, “Identification and compensation of particular deviations of 5-Axis machining centers”, International Journal of Machine Tools and Manufacture Vol. 43, pp.771-780, 2003.
Tsutsumi, M. and A. Saito, “Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting table by simultaneous four-axis control movements”, International Journal of Machine Tools and Manufacture, Vol.44, pp.1333-1342, 2004.
Uddin, M.S., S. Ibaraki, A. Matsubara, and T. Matsushita, “Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors”, Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 33, pp. 194-201, 2009.
Weikert, S. and W. Knapp, “R-Test, a new device for accuracy measurements on five axis machine tools”, Annals of the CIRP, Vol. 53, No.1, pp.429-432, 2004.
Zhang, G. and Y. Zang, “A method for machine calibration using 1D ball array”, Annals of the CIRP , Vol.40, pp.519-522, 1991.