| 研究生: |
李宗澤 Li, Tsung-Tse |
|---|---|
| 論文名稱: |
進步型沸水式核能電廠鋼筋混凝土圍阻體極限耐壓能力分析及自振分析 Vibration Analysis and Ultimate Analysis of ABWR Reinforced Concrete Containment Subjected to Internal Pressure |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 鋼筋混凝土圍阻體 、進步型沸水式反應爐 、極限耐壓能力 |
| 外文關鍵詞: | ABAQUS, reinforced concrete containment, ABWR, ultimate pressure strength |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的進步,在未來20年內對於電力的需求會大幅增加,核能發電目前在台灣的能源結構依然是不可或缺的一部分,它比起再生能源發電,提供較為穩定、高效率的發電模式,也不會像火力發電產生大量二氧化碳,使全球溫室效應加劇,違背未來節能減碳的趨勢,核能發電雖然有許多優點,也有最主要的缺點即是輻射污染的問題,隨著核能發電的發展,開始讓人們對於一旦核能電廠發生重大事故時的,本身結構是否安全及輻射是否可能會外洩等問題產生疑慮,在台灣,龍門電廠的採用的是進步型沸水式反應爐,有別於目前運轉中的核一廠、核二廠的沸水式反應爐和核三廠的壓水式反應爐,採用新的反應爐機組和不同的圍阻體結構設計,目前在國內對於龍門電廠鋼筋混凝土圍阻體的研究分析還不是很完善,因此本文利用有限元素軟體ABAQUS分析探討進步型沸水式反應爐之鋼筋混凝土圍阻體的極限耐壓能力,了結圍阻體內承壓的結構行為,並討論不同的結構模式及高溫的情況下,找出圍阻體承壓之極限耐壓能力及其裂縫位置。除了靜力的分析之外,並考慮到未來圍阻體會受到地震等動態負載,探求圍阻體在一些不同邊界條件的自然振動頻率,以了解其動態特性避免共振現象的發生,希望能對日後關於龍門電廠鋼筋混凝土圍阻體之研究有一參考的依據。
Nowadays, nuclear electricity generation is indispensable to the energy structure in Taiwan. The nuclear electricity generation can stably supply a large amount of electricity, and yet have less impact on the environmental pollution. With the increasing popularity of nuclear electricity generation, people have put more emphasis on the safety issue of the nuclear power. For the first time in Taiwan, Lungmen Nuclear Power Plant uses the Advanced Boiling Water Reactor. The type of this reactor and the structure design of its containment vessel are both different from all the other nuclear power plants in Taiwan. This study uses ABAQUS finite element analysis software to research into the ultimate pressure strength and the natural frequency of the containment vessel of Lungmen Nuclear Power Plant. By plotting a radial contour diagram and an axial contour diagram of the Reinforced Concrete Containment Vessel of Lungmen Nuclear Power Plant, we can know that the location of the maximum radial displacement is at about elevation position 2500 and the location of the maximum axial displacement is at the top slab inside in east-west direction. When internal pressure is the designed pressure, the structural behavior is still in linear elastic stage, and the temperature has a significant influence on ultimate pressure strength of containment vessel. In addition, the nature frequency of containment vessel is higher than other common RC buildings.
參考文獻
Abrams, M. S. (1968). Compressive Strength of Concrete at Temperature to 1600F. Temperature and Concrete, ACI Publication SP 25, pp. 33-58.
ACI Committee 216. (1994). Guide For Determining the Fire Endurance of Concrete Elements(ACI 216R-89), American Concrete Institute, Detroit, Michigan
ACI Committee, American Concrete Institute, & International Organization for Standardization. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
Amin, M., Eberhardt, A. C., & Erler, B. A. (1993). Design considerations for concrete containments under severe accident loads. Nuclear engineering and design, 145(3), 331-338.
Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 93(5).
Balmer, G. G. (1949, October). Shearing Strength of Concrete under High Triaxial Stress-Computation of Mohr’s Envelope as a Curve. Structural Research Laboratory Report, No. Sp-23, Denver, Colorado.
Chen, W. F. (1982). Plasticity in reinforced concrete. McGraw Hill, 1982.
Desayi, P., & Krishnan, S. (1964, March). Equation for the stress-strain curve of concrete. In ACI Journal Proceedings (Vol. 61, No. 3). ACI.
Energy, G. N. (1997). ABWR Design Control Document.
General Electric Company. (1999). ASME Comtainment Vessel Design Specification.
General Electic Company. (2006). The ABWR plant General Description.
GE-Hitachi Nuclear Energy, Ltd. (2013) . Advanced Boiling Water Reactor.
Gilbert, R. I., & Warner, R. F. (1978). Tension stiffening in reinforced concrete slabs. Journal of the structural division, 104(12), 1885-1900.
Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and concrete research, 6(6), 773-781.
Hu, H. T., & Liang, J. I. (2000). Ultimate analysis of BWR Mark III reinforced concrete containment subjected to internal pressure. Nuclear Engineering and Design, 195(1), 1-11.
Hu, H. T., & Lin, Y. H. (2006). Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure. International journal of pressure vessels and piping, 83(3), 161-167.
Hu, H. T., & Schnobrich, W. C. (1988). Nonlinear analysis of plane stress state reinforced concrete under short term monotonic loading. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign.
Hu, H. T., & Schnobrich, W. C. (1990). Nonlinear analysis of cracked reinforced concrete. ACI Structural Journal, 87(2).
Kwak, H. G., & Filippou, F. C. (1990). Finite element analysis of reinforced concrete structures under monotonic loads (pp. 33-39). Berkeley, CA, USA: Department of Civil Engineering, University of California.
Kupfer, H., Hilsdorf, H. K., & Rusch, H. (1969, August). Behavior of concrete under biaxial stresses. In ACI Journal proceedings (Vol. 66, No. 8). ACI.
Kotsovos, M. D., & Newman, J. B. (1977, September). Behavior of concrete under multiaxial stress. In ACI Journal Proceedings (Vol. 74, No. 9). ACI.
Li, L. Y., & Purkiss, J. (2005). Stress–strain constitutive equations of concrete material at elevated temperatures. Fire Safety Journal, 40(7), 669-686.
Maekawa, K., & Okamura, H. (1983). The deformational behavior and constitutive equation of concrete using the elasto-plastic and fracture model.Journal of the Faculty of Engineering. University of Tokyo. Series B, 37(2), 253-328.
Meyer, C., & Okamura, H. (1986). Finite element analysis of reinforced concrete structures. ASCE.
Ngo, D., & Scordelis, A. C. (1967, March). Finite element analysis of reinforced concrete beams. In ACI Journal Proceedings (Vol. 64, No. 3). ACI.
Nelissen, L. J. M. (1972). Biaxial testing of normal concrete. HERON, 18 (1), 1972.
Nilson, A. H. (1972, July). Internal measurement of bond slip. In ACI Journal Proceedings (Vol. 69, No. 7). ACI.
Nilson, A. H. (1982). State-of-the-art report on finite element analysis of reinforced concrete. ASCE.
Pfeiffer, P. A., Kennedy, J. M., & Marchertas, A. H. (1990). Thermal effects in the overpressurization response of reinforced concrete containment. Nuclear Engineering and Design, 120(1), 25-34.
Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. University of Illinois Bulletin; v. 26, no. 12.
Rashid, Y. R. (1968). Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear engineering and design, 7(4), 334-344.
Rots, J. G., & Blaauwendraad, J. (1989). Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?. HERON, 34 (1), 1989.
SIMULIA Abaqus Analysis User's Manuals, Therory Manuals and Example Problems Manuals. (2014). (Version 6.14 ed.). France: Dassault Systèmes Corporation.
Taiwan Power Company. (2011). Preliminary and Final Safety Analysis Report Lungmen Nuclear Stations Unit 1 and 2.
Wang, C. K., & Salmon, C. G. (1979). Reinforced concrete design.
Zienkiewicz, O. C., Owen, D. R. J., Phillips, D. V., & Nayak, G. C. (1972). Finite element methods in the analysis of reactor vessels. Nuclear Engineering and Design, 20(2), 507-541.
王金昌、陳頁開編著, “ABAQUS在土木工程中的應用,” 浙江大學出版社, 2006.
台灣電力公司, http://www.taipower.com.tw/content/new_info/new_info-b21.aspx?LinkID=7
東京電力公司, http://www.tepco.co.jp/en/challenge/energy/nuclear/p-struc-e.html
柯志明, “何能?核能!核能發電的前世今生與來世,”台灣電力公司, 龍門施工處.
校內:2020-08-26公開