| 研究生: |
劉彥豪 Liu, Yan-Hao |
|---|---|
| 論文名稱: |
微管道迴路內熱泡驅動機制之實驗探討 Experimental Studies of Thermal Bubble Driven Mechanism in a Microchannel Loop |
| 指導教授: |
呂宗行
Leu, Tzong-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 熱毛細力效應 、微機電製程加工技術 、微管道迴路 |
| 外文關鍵詞: | hermal Capillary effect, MEMS Fabrication, Microchannel loop |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用熱毛細力效應(Thermocapillary effect)使熱泡於微管道迴路內產生移動,主要驅動方式是利用單一方波信號驅動微加熱器,使加熱器產生熱量傳至微管道內,並由內部的工作流體異丙醇(IPA)吸收,工作流體因吸收熱量後,經由液態沸騰產生過熱氣泡,當繼續輸入熱通量,熱汽泡將向上下游成長變大,並在加熱器上游設計汽泡閥,使熱泡成長過程中因微管道迴路中不同的流動阻力,造成熱泡不對稱的成長。在加熱期間,熱泡只沿著一個方向成長,當加熱週期結束時,利用致冷晶片(Thermoelectric Cooling Chip )與加熱器交互作用,於熱泡兩端產生溫度梯度,熱泡受到溫度梯度的影響,導致熱泡兩端產生溫度差,引起熱泡兩端介面的表面張力不平衡,而往成長端移動;當方波訊號驅動時,熱泡將會連續不斷生長並產生週期性的移動。在此實驗的結果發現到Vheater=5V、tH=4 sec、tC=16 sec、F=0.05Hz、Xcooler=-1000m時,熱泡移動效果最好,移動速度最高可達60.44 m/sec;此外實驗結果中發現,沿著微管道迴路的背景溫度對於熱泡移動的效能是一個非常重要的參數。
In this study, thermocapillary effect is applied to move thermal bubbles in a microchannel loop. By driving the heater with a square-wave signal, bubble nucleates and grows in a microchannel loop. During heating period, thermal bubble grows asymmetrically in one direction due to the different flow resistance design in the microchannel loop. By adjusting the distance between thermoelectric cooling chip and micro heater, a temperature gradient field is generated along the bottom wall of the thermal bubble. As soon as the heating pulse is turned off, an interesting phenomenon is found. Instead of bubble collapse, the temperature gradient field causes temperature difference and induces an unequal surface tension between two interfaces of the thermal bubble. Then, thermal bubble moves toward growing direction. Continuous bubble grows and moves periodically when square-wave pulsing signals are applied. In the experiments, it is found that the movement of bubble is remarkable when Vheater=5V, tH=4 sec, tC=16sec, F=0.05Hz, Xcooler=-1000m. The speed of thermal bubble movement can reach as high as 60.44m/sec. The experimental results also found the background temperature along the microchannel loop is the key control parameter of effectiveness of bubble’s movement. Numerical analysis is applied to verify the accuracy and reliability of the experimental results.
【1】 J. J. Cefa, D. A. Barrow, P. Woias, and E. Muller, “Integrated Chemical Analysis Microsystems in Space life Sciences Research”, Journal of Micromechanics and Microengineering, 4, pp. 172-185, 1994
【2】 M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnson, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated Structures for Integrated DNA Analysis”, Proceedings of the National Academy of Sciences of the United Stated of America, 93, 5556-5561, 1996
【3】 M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. N. Man, D. Jones, D. Heltsinger, C. H. Mastrangelo, and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device”, Science, Vol. 282, pp. 484-487, 1998
【4】 高瑞鴻, 呂宗行, “Fe-PDMS製作之無動件閥微幫浦設計與操作”國立成功大學航空太空工程學系碩士論文, 2010.
【5】 J. H. Tsai and L. W. Lin,“A Thermal-bubble-Actuated Micronozzle-Diffuser Pump”, Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 665-671. December 2002
【6】 Y. Yokoyama, M. Takeda, T. Umemoto, T. Ogushi,“Thermal micro pumps for a loop-type microchannel”, Sensors and Actuators A: Phys. 111, pp. 123-128, 2004
【7】 S. H. Chiu and C. H. Liu,“An air-bubble-actuated micropump for on-chip blood transportation”, Lab on a Chip, 1524-1533, September, 2009
【8】 T. G. Kang and Y. H. Cho,“A Four-Bit Digital Microinjector Using Microheater Array for Adjusting the Ejected Droplet Volume”, Journal of Microelectromechanical Systems, Vol, 14, NO, 5, pp. 1031-1038, October, 2005
【9】 K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich and D. Liepmann, “Performance of MEMS based micro capillary pumped loop for chip-level temperature control”, The 14th IEEE International Conference on Micro Electro Mechanical Systems, 2001
【10】 D. S. Meng and C. J. Kim,“Micropumping by Directional Growth and Hydrophobic Venting of Bubbles”, Proceedings of IEEE MEMS, pp. 423-42, 2005
【11】 T. Jun and C. J. Kim,“Microscale pumping with traversing bubbles in microchannels”, Solid-State Sensor Actuator Workshop, pp. 144-147, 1996
【12】 N. O. Young, J. S. Goldstein, and M. J. Block,“The motion of bubble in a vertical temperature gradient”, Journal of Fluid Mech., Vol.6, pp. 350-356, 1959.
【13】 K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems”, Microscale Thermophysical Engineering, Vol.3, pp.169-182, 1999.
【14】 呂宗行, “古老物理新應用-表面張力於微熱流系統應用”, 台灣化工工程學會會刊, 56卷4期Aug. , 2009
【15】 Timothy S. Sammarco and Mark A. Burns, “Thermocapillary pumping of Discrete Drops in Microfabricated Analysis Devices, ”AIChE Journal, Vol. 45, No. 2, Feb. 1999.