| 研究生: |
張峻偉 Chang, Jun-Wei |
|---|---|
| 論文名稱: |
63Sn/37Pb銲點試片在循環比例位移路徑下疲勞初始壽命預測-含損傷內涵時間黏塑性理論之應用 Prediction Fatigue Initiation Life of 63Sn/37Pb Solder Joint Specimens under Cyclic Proportional Displacement Path Via The Endochronic Viscoplasticity with Cyclic Damage |
| 指導教授: |
李超飛
Lee, C. F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 臨界損傷因子 、Coffin-Manson修正式 、循環損傷演化方程式 、增量式內涵時間黏塑性理論 、63Sn/37Pb 、Sn/3.5Ag/0.75Cu 、循環比例位移路徑 |
| 外文關鍵詞: | Endochronic viscoplaticity increment form, Evolution equation of cyclic damage, Coffin-Manson modification, Critical damage factor, Cyclic proportional displacement path, Sn/3.5Ag/0.75Cu, 63Sn/37Pb |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Lee and Lee在2007針對無鉛銲錫Sn/3.5Ag/0.75Cu銲點試片所做之循環比例位移路徑研究分析中,提出了試片位移修正概念,並利用串連的概念推算出夾具勁度。2002年Park等人亦針對63Sn/37Pb銲點試片以相同實驗條件做出相同位移路徑試驗,本文以2007年Lee and Chen針對面積 長 之63Sn/37Pb試棒所發現的材料參數 、 與 配合Lee and Lee所發現的試片參數 進行增量式內涵時間黏塑性理論計算,希望證明相同材料下是否因幾何形狀與尺寸大小的不同而造成材料參數不同。
依Lee and Chen所提出的循環損傷演化方程式,推導出損傷因子與疲勞循環圈數之關係式 ,在此本文利用D=0.5下,位移範圍對應破壞循環圈數的關係圖,並引用Lee and Chen針對63Sn/37Pb試棒單軸試驗下所發現的材料參數 做為本文 下之基準材料參數,並引用Lee and Lee對Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑損傷參數的比例係數 為基準,推算出本文在 、 之損傷參數,並引用Lee and Chen所推導的Coffin-Manson修正式配合臨界損傷因子 進行疲勞初始壽命預估,而後建立起系統位移範圍與非彈性應變範圍的關係式,合併Coffin-Manson修正式可直接由系統位移獲知初始疲勞壽命。
In 2007, for the solder joint Sn/3.5Ag/0.75Cu cyclic proportional displacement path, Lee and Lee proposed the modification of solder joint specimen with stiffness of material testing system, and figured out the grip stiffiness by using series connetion concept. In 2002, Park used the same way to make the experiment with 63Sn/37Pb solder joint. In this paper, the material parameters , and were determined with Lee and Chen research on a 63Sn/37Pb bar whose area is , and the length is . Combining the material parameters and specimen parameter which were getting from Lee and Lee to run the endochronic viscoplaticity increment form consideration, passed through above step to proof that whether the material parameters with same material but different geometry and size become changed or not.
From the evolution equation of cyclic damage which proposed by Lee and Chen, getting a relationship between damage factor and cyclic fatigue life. In this paper, for a fixed damage parameter D=0.5, the figure displacement correspond to fatigue life, citing the damage parameter which was proposed by Lee and Chen to become the damage parameter daturn whose angle equal to 0, and citing the Sn/3.5Ag/0.75Cu solder joint specimen parameter proposed by Lee and Lee to obtain the damage parameters whose angle is equal to 45 or 90. From above information, citing the Coffin-Manson modification and combining with the critical damage parameter to estimate the fatigue initiation life, after that, establishing the relationship between system displacement range and effect inelastic strain range and combining the Coffin-Manson modification to obtain the initiation fatigue life immediately.
Reference
[1] Park, T. S. and Lee, S. B., “Isothermal Low Cycle Fatigue Test of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joint under Mixed-Mode Loading Cases”, Electronic Components and Technology Conference, pp.979-984, 2002.
[2] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy”, Vol. 23, pp.433-445, 2007.
[3] Stolkarts, V., Keer, L.M. and Fine, M.E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder”, J. of Mechanics and Physics of Solid, Vol.47, pp.2451-2468, 1999.
[4] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy”, J. of Mechanics, Vol.22, No.3, pp.181-191, 2006.
[5] Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading,” ASME J. Electronic Packing., Vol. 126, pp. 367-373, 2004.
[6] Budiansky, B. and O’Connell, R. J., “Elastic Moduli of a Cracked Solder”, International J. of Plasticity, Vol.12, pp.81-97, 1976.
[7] Lehman, L.P., Kinyanjui, R.K., Wang, J., Xing, Y., Zavalij, L., Borgesen, P. and Cotts, E. J., “Microstructure and Damage Evolution in Sn-Ag-Cu Solder Joints”, Electronic Components and Technology Conference, 2005.
[8] Frear, D. R., Jones, W. B. and Kinsman, K. R., “Solder Mechanics:A State of the Assessment”, TMS. Pub. Co. USA, 1991.