簡易檢索 / 詳目顯示

研究生: 王玟婷
Wang, Wen-Ting
論文名稱: 單核及雙核鑭系錯化物之合成、結構及磁性研究
Syntheses, Structures, and Magnetic Properties of Mononuclear and Dinuclear Lanthanide(III) Complexes
指導教授: 蔡惠蓮
Tsai, Hui-Lien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 179
中文關鍵詞: 單分子磁鐵鑭系金屬錯化合物
外文關鍵詞: single-molecule magnets, lanthanide complexes
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分成兩部分,第一部分是利用Hpppd (1-(pyridin-2-yl)-3-(1H-pyrrol-2-yl)propane-1,3-dione)以及鑭系(III)金屬離子合成一系列的單核鑭系金屬錯合物,利用單晶X繞射儀鑑定其主結構為一個Hpppd、五個配位水以及一個配位甲醇所形成的單核鑭系錯合物。在交流磁化率(alternative current susceptibility, ac)的研究中發現,在零場時只有3Dy有磁緩現象發生,其磁異向能(Ueff)為82.5 K,在外加場下,除了4Ho以外的結構都有磁緩現象的產生,其磁異向能分別為33.7 K (1Gd)、129.5 K(3Dy)、35.3 K(5Er)以及135.2 K(6Yb),而2Tb在高溫以及低溫有其各自的磁緩過程,其各自的磁異向能分別為5.0 K (低溫過程)以及22.7 K (高溫過程),交流磁化率的研究中最令人驚訝的是6Yb的磁異向能竟高達135.2 K,比任何一個在過去文獻研究的單核Yb還高,是目前單核Yb中磁異向能最高的。
    第二部分是利用Heppd (1-(2-ethoxyphenyl)-3-(pyridin-2-yl)propane-1,3-dione) 以及鑭系(III)金屬離子合成一系列的雙核鑭系金屬錯化合物,利用單晶X繞射儀鑑定其主結構為三個Heppd配位,利用Heppd上的氧做為橋接來形成Ln2O3的配位環境,而雙核的錯合物的兩個鑭系金屬的配位環境是不同的,Ln1是十配位的幾何結構而Ln2是八配位的幾何結構,所形成的雙核不對稱錯合物,在過去的文獻中,雙核的不對稱錯合物不曾有十配位與八配位所構成的。在交流磁化率(alternative current susceptibility, ac)的研究中發現,只有9Dy在外加場下有磁緩的現象出現,其磁異向能為60.0 K。

    There are two parts to this work. For the first part, the family of isostructural mononuclear lanthanide complexes [Ln(LH*)(H2O)5(MeOH)]Cl3·2H2O (Ln = Gd(1 Gd), Tb(2Tb), Dy(3Dy), Ho(4Ho), Er(5Er) and Yb(6Yb); LH* = a zwitterionic form of β-diketone ligand) were synthesized by using a bidentate chelating β-diketone ligand and lanthanide(III) chloride hexahydrate. The single-crystal X-ray diffraction studies show that all complexes crystallized in the triclinic P1 ̅. The local geometry of the LnIII ions in all complexes determined a square antiprism geometry (D4d). For the 3Dy, the magnetic property has been studied that it exhibits slow magnetic relaxations under zero dc field with the energy barrier (Ueff) of 82.5 K, but for 1Gd, 2Tb, 4Ho, 5Er and 6Yb negligible χ' signal were observed. Interestingly, 1Gd, 3Dy and 5Er exhibited slow relaxation of the magnetization under an applied dc field with effective energy barriers (Ueff) of 33.7 K、129.5 K and 35.3 K, respectively. Especially, 2Tb showed a two slow relaxation of the magnetization processes under the applied magnetic field of 1500 Oe, corresponding to the low temperature process and high temperature process with energy barrier (Ueff) of 5.0 K and 22.7 K, respectively. Strikingly, 6Yb exhibits the effective value of the energy barrier of 135.2 K, which is among the highest ones currently known for purely 4f single molecule magnets based on Yb(III).
    For the second part, the new series of isostructural dinuclear complexes [LnIII2(eppd)3(NO3)3]·MeCN·xH2O (LnIII = Tb(8Tb), Dy(9Dy) and Ho(10Ho); x = 0.8 for 8Tb and 10Ho, x = 1 for 9Dy) were synthesized by using a bidentate chelating β-diketone ligand (Heppd) and lanthanide(III) nitrate pentahydrate. The single-crystal X-ray diffraction studies show that the dinuclear complexes are bridged by the alkoxide groups of three ligand (eppd) leading to Ln2¬O3 core. The Ln1 site presents a N2O8 and Ln2 site present a N1O7 coordination environment. Magnetic studies reveal that no maximum signal for 9Dy was found below 10 K, but for 8Tb and 10Ho negligible χ' signal were observed. Under the applied field, no maximum signal for 8Tb was found below 10 K with an energy barrier of 8.4 K and 9Dy show a slow magnetic relaxation with an energy barrier of 60.0 K.

    中文摘要 I Abstract II 誌謝 IV Contents V Lists of Tables VII Lists of Figures IX Lists of Schemes XVIII I. Introduction 2 II. Experimental section 6 II. 1. Synthesis 6 II. 2. X-ray crystallography 10 II. 3. Physical measurements 13 III. Results and discussion 14 III. 1. Synthesis 14 III. 2. Crystals Structures 16 III. 3. Magnetic properties 33 III. 4. Magellan calculation and comparison 87 IV. Conclusion 95 I. Experimental section 98 I. 1. Synthesis 98 I. 2. X-ray crystallography 101 I. 3. Physical measurements 103 II. Results and discussion 104 II. 1. Synthesis 104 II. 2. Crystals Structures 106 II. 3. Magnetic properties 119 III. Conclusion 142 Reference 143 Appendix 151

    1. Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Foiling, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804-1816.
    2. Natterer, F. D.; Yang, K.; Paul, W.; Willke, P.; Choi, T.; Greber, T.; Heinrich, A. J.; Lutz, C. P., Reading and writing single-atom magnets. Nature 2017, 543 (7644), 226-228.
    3. Donati, F.; Rusponi, S.; Stepanow, S.; Wäckerlin, C.; Singha, A.; Persichetti, L.; Baltic, R.; Diller, K.; Patthey, F.; Fernandes, E.; Dreiser, J.; Šljivančanin, Ž.; Kummer, K.; Nistor, C.; Gambardella, P.; Brune, H., Magnetic remanence in single atoms. Science 2016, 352, 318–321.
    4. Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E., Molecular spins for quantum computation. Nat. Chem. 2019, 11 (4), 301-309.
    5. Shiddiq, M.; Komijani, D.; Duan, Y.; Gaita-Arin ̃o, A.; Coronado, E.; Hill, S., Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 2016, 531 (7594), 348-351.
    6. Coronado, E., Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2019, 5 (2), 87-104.
    7. Vincent, R.; Klyatskaya, S.; Ruben, M.;Wernsdorfer, W.; Balestro, F., Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 2012, 488 (7411), 357-360.
    8. Thiele, S.; Balestro.F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W., Electrically driven nuclear spin resonance in single-molecule magnets. Science 2014, 344, 1135–1138.
    9. Meng, Y.-S., Jiang, S.-D., Wang, B.-W., Gao, S., Understanding the Magnetic Anisotropy toward Single-Ion Magnets. Acc. Chem. Res. 2016, 49 (11), 2381-2389.
    10. Gupta, S. K.; Murugavel, R., Enriching lanthanide single-ion magnetism through symmetry and axiality. Chem. Commun. 2018, 54 (30), 3685-3696.
    11. Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A., Lanthanide single-molecule magnets. Chem. Rev. 2013, 113 (7), 5110-5148.
    12. Rinehart, J. D.; Long, J. R., Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2 (11), 2078-2085.
    13. Liu, J.-L.; Chen, Y.-C.; Tong, M.-L., Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47 (7), 2431-2453.
    14. Pointillart, F.; Cador, O.; Guennic, B. L.; Ouahab, L., Uncommon lanthanide ions in purely 4f Single Molecule Magnets. Coord Chem Rev 2017, 346, 150-175.
    15. Zhang, P.; Guo, Y.-N.; Tang, J., Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord Chem Rev 2013, 257 (11-12), 1728-1763.
    16. Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-Y.; Kaizu, Y., Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694-8695.
    17. Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R., A N23- radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J. Am. Chem. Soc. 2011, 133 (36), 14236-14239.
    18. Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A., Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
    19. Chen, Y.-C.; Liu, J.-L.; Lan, Y.; Zhong, Z.-Q.; Mansikkamaki, A.; Ungur, L.; Li, Q.-W.; Jia, J.-H.; Chibotaru, L. F.; Han, J.-B.; Wernsdorfer, W.; Chen, X.-M.; Tong, M.-L., Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet. Chem. Eur. J. 2017, 23 (24), 5708-5715.
    20. Wu, H.; Li, M.; Yin, B.; Xia, Z.; Ke, H.; Wei, Q.; Xie, G.; Chen, S.; Gao, S., Fine-tuning the type of equatorial donor atom in pentagonal bipyramidal Dy(III) complexes to enhance single-molecule magnet properties. Dalton Trans. 2019, 48 (43), 16384-16394.
    21. Li, J.; Go ́mez-Coca, S.; Dolinar, B. S.; Yang, L.; Yu, F.; Kong, M.; Zhang, Y.-Q.; Song, Y.; Dunbar, K. R., Hexagonal Bipyramidal Dy(III) Complexes as a Structural Archetype for Single-Molecule Magnets. Inorg. Chem. 2019, 58 (4), 2610-2617.
    22. Ungur, L.; Chibotaru, L. F., Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 2011, 13 (45), 20086-20090.
    23. Zhang, S.; Mo, W.; Zhang, J.; Zhang, Z.; Yin, B.; Hu, D.; Chen, S., Regulation of Substituent Effects on Configurations and Magnetic Performances of Mononuclear Dy(III) Single-Molecule Magnets. Inorg. Chem. 2019, 58 (22), 15330-15343.
    24. Zhang, W.; Xu, S.-M.; Zhu, Z.-X.; Ru, J.; Zhang, Y.-Q.; Yao, M.-X., Strong i ntramolecular DyIII–DyIII magnetic couplings up to 15.00 cm−1 in phenoxyl-bridged dinuclear 4f complexes. New J. Chem. 2020, 44 (5), 2083-2090.
    25. Zhang, S.; Shen, N.; Liu, S.; Ma, R.; Zhang, Y.-Q.; Hu, D.-W.; Liu, X.-Y.; Zhang, J.-W.; Yang, D.-S., Rare CH3O−/CH3CH2O−-bridged nine-coordinated binuclear DyIII single-molecule magnets (SMMs) significantly regulate and enhance the effective energy barriers. CrystEngComm 2020, 22 (10), 1712-1724.
    26. Liu, X.-W.; Wu, Z.; Chen, J.-T.; Li, L.; Chen, P.; Sun, W.-B., Regulating the single-molecule magnetic properties of phenol oxygen-bridged binuclear lanthanide complexes through the electronic and spatial effect of the substituents. Inorg. Chem. Front. 2020, 7 (5), 1229-1238.
    27. Cen, P.; Liu, X.; Zhang, Y.-Q.; Ferrando-Soria, J.; Xie, G.; Chen, S.; Pardo, E., Modulating magnetic dynamics through tailoring the terminal ligands in Dy2 single-molecule magnets. Dalton Trans. 2020, 49 (3), 808-816.
    28. Demir, S.; Gonzalez, M. I.; Darago, L. E.; Evans, W. J.; Long, J. R., Giant coercivity and high magnetic blocking temperatures for N23- radical-bridged dilanthanide complexes upon ligand dissociation. Nat. Commun. 2017, 8 (1), 2144-2155.
    29. Su, Q.-Q.; Fan, K.; Jin, X.-X.; Huang, X.-D.; Cheng, S.-C.; Luo, L.-J.; Li, Y.-J.; Xiang, J.; Ko, C.-C.; Zheng, L.-M.; Lau, T.-C., Syntheses, crystal structures and magnetic properties of a series of luminescent lanthanide complexes containing neutral tetradentate phenanthroline-amide ligands. Inorg. Chem. Front. 2019, 6 (6), 1442-1452.
    30. Upadhyay, A.; Vignesh, K. R.; Das, C.; Singh, S. K.; Rajaraman, G.; Shanmugam, M., Influence of the Ligand Field on the Slow Relaxation of Magnetization of Unsymmetrical Monomeric Lanthanide Complexes: Synthesis and Theoretical Studies. Inorg. Chem. 2017, 56 (22), 14260-14276.
    31. Larionov, S. V.; Bryleva, Y. A.; Glinskaya, L. A.; Plyusnin, V. F.; Kupryakov, A. S.; Agafontsev, A. M.; Tkachev, A. V.; Bogomyakov, A. S.; Piryazev, D. A.; Korolkov, I. V., Ln(III) complexes (Ln = Eu, Gd, Tb, Dy) with a chiral ligand containing 1,10-phenanthroline and (-)-menthol fragments: synthesis, structure, magnetic properties and photoluminescence. Dalton Trans. 2017, 46 (34), 11440-11450.
    32. Gao, F.; Yang, F.-L.; Feng, X.; Xu, H.; Sun, W.; Liu, H.; Li, X.-L., Half-sandwich lanthanide crown ether complexes with the slow relaxation of magnetization and photoluminescence behaviors. Dalton Trans. 2017, 46 (4), 1317-1323.
    33. Ding, Y.-S.; Han, T.; Hu, Y.-Q.; Xu, M.; Yang, S.; Zheng, Y.-Z., Syntheses, structures and magnetic properties of a series of mono- and di-nuclear dysprosium(III)-crown-ether complexes: effects of a weak ligand-field and flexible cyclic coordination modes. Inorg. Chem. Front. 2016, 3 (6), 798-807.
    34. Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P., Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548 (7668), 439-442.
    35. Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkama ̈ki, A.; Layfield, R. A., A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. 2017, 56 (38), 11445-11449.
    36. Canaj, A. B.; Dey, S.; Marti ́, E. R.; Wilson, C.; Rajaraman, G.; Murrie, M., Insight into D6h Symmetry: Targeting Strong Axiality in Stable Dysprosium(III) Hexagonal Bipyramidal Single-Ion Magnets. Angew. Chem. Int. Ed. 2019, 131, 14284-14289.
    37. Gupta, S. K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R., An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7 (8), 5181-5191.
    38. Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L. F.; Lan, Y.; Wernsdorfer W.; Gao, S.; Chen, X.-M.; Tong, M.-L., A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J. Am.Chem. Soc. 2016, 138 (16), 5441-5450.
    39. Ding, Y.-S.; Chilton, N. F.; Winpenny, R. E. P.; Zheng, Y.-Z., On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angew. Chem. Int. Ed. 2016, 55 (52), 16071-16074.
    40. Jiang, Z.; Sun, L.; Yang, Q.; Yin, B.; Ke, H.; Han, J.; Wei, Q.; Xie, G.; Chen, S., Excess axial electrostatic repulsion as a criterion for pentagonal bipyramidal DyIII single-ion magnets with high Ueff and TB. J. Mater. Chem. C 2018, 6 (15), 4273-4280.
    41. Ganivet, C. R.; Ballesteros, B.; Torre, G. D. L.; Clemente-Juan, J. M.; Coronado, E.; Torres, T., Influence of Peripheral Substitution on the Magnetic Behavior of Single-Ion Magnets Based on Homo- and Heteroleptic TbIII Bis(phthalocyaninate). Chem. Eur. J. 2013, 19, 1457-1465.
    42. Chilton, N. F.; Goodwin, C. A. P.; Mills, D. P.; Winpenny, R. E. P., The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem. Commun. 2015, 51 (1), 101-103.
    43. Levine, R.; Sneed, J. K., The Synthesis of New β-Diketones. J. Am.Chem. Soc. 1951, 73, 4478.
    44. Pike, A. C. W.; Garman, E. F.; Krojer, T.; Delft, F. V.; Carpenter, E. P., An overview of heavy-atom derivatization of protein crystals. Acta Cryst. 2016, D72, 303-318.
    45. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
    46. Bain, G. A.; Berry, J. F., Diamagnetic Corrections and Pascal’s Constants. J Chem Educ 2008, 85 (4), 532-536.
    47. Wang, L.-F.; Qiu, J.-Z.; Hong, J.-Y.; Chen, Y.-C.; Li, Q.-W.; Jia, J.-H.; Jover, J.; Ruiz, E.; Liu, J.-L.; Tong, M.-L., Tunable Magnetization Dynamics through Solid-State Ligand Substitution Reaction. Inorg. Chem. 2017, 56 (15), 8829-8836.
    48. Yamada, S.; Sako, N.; Okuda, M.; Hozumi, A., A dual-synthon in pyridinium chloride: formation of ladder-like and columnar motifs through hydrogen bonds and cation–π interactions. CrystEngComm 2013, 15 (1), 199-205.
    49. Silveira, R. G.; Cunha, B. N.; Tenório, J. C.; Aguiar, D. V. A. D.; Souza, P. D. C.; Vaz, B. G.; Ellena, J.; Batista, A. A.; Martins, F. T., A simple alternative to prodrug: The hydrochloride salt monohydrate of the prostate anticancer drug abiraterone. Journa Mol. Struct. 2019, 1190, 165-170.
    50. Chilton, N. F.; Langley, S. K.; Moubaraki, B.; Soncini, A.; Batten, S. R.; Murray, K. S., Single molecule magnetism in a family of mononuclear β-diketonate lanthanide(III) complexes: rationalization of magnetic anisotropy in complexes of low symmetry. Chem. sci. 2013, 4, 1719-1730.
    51. Muetterties, E. L.; Guggenberger, L. J., Idealized Polytopal Forms. Description of Real Molecules Referenced to Idealized Polygons or Polyhedra in Geometric Reaction Path Form. J. Am. Chem. Soc. 1974, 96 (6), 1748-1756.
    52. Bazhenova, T. A.; Mironov, V. S.; Yakushev, I. A.; Svetogorov, R. D.; Maximova, O. V.; Manakin, Y. V.; Kornev, A. B.; Vasiliev, A. N.; Yagubskii, E. B., End-to-End Azido-Bridged Lanthanide Chain Complexes (Dy, Er, Gd, and Y) with a Pentadentate Schiff-Base [N3O2] Ligand: Synthesis, Structure, and Magnetism. Inorg. Chem. 2020, 59 (1), 563-578.
    53. Chen, Y.-C.; Peng, Y.-Y.; Liu, J.-L.; Tong, M.-L., Field-induced slow magnetic relaxation in a mononuclear Gd(III) complex. Inorg. Chem. Commun. 2019, 107, 107449-107453.
    54. Cunha, T. T. D.; Barbosa, V. M. M.; Oliveira, W. X. C.; Pinheiro, C. B.; Pedroso, E. F.; Nunes, W. C.; Pereira, C. L. M., Slow magnetic relaxation in mononuclear gadolinium(III) and dysprosium(III) oxamato complexes. Polyhedron 2019, 169, 102-113.
    55. Petrosyants, S. P.; Babeshkin, K. A.; Gavrikov, A. V.; Ilyukhin, A. B.; Belova, E. V.; Efimov, N. N., Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes. Dalton Trans. 2019, 48 (33), 12644-12655.
    56. Zou, Q.; Huang, X.-D.; Liu, J.-C.; Bao, S.-S.; Zheng, L.-M., Lanthanide anthracene complexes: slow magnetic relaxation and luminescence in Dy(III), Er(III) and Yb(III) based materials. Dalton Trans. 2019, 48 (8), 2735-2740.
    57. Maxwell, L.; Amoza, M.; Ruiz, E., Mononuclear Lanthanide Complexes with 18-Crown-6 Ether: Synthesis, Characterization, Magnetic Properties, and Theoretical Studies. Inorg. Chem. 2018, 57 (21), 13225-13234.
    58. Gorczyński, A.; Marcinkowski, D.; Kubicki, M.; Löffler, M.; Korabik, M.; Karbowiak, M.; Wiśniewski, P.; Rudowicz, C.; Patroniak, V., New field-induced single ion magnets based on prolate Er(III) and Yb(III) ions: tuning the energy barrierUeffby the choice of counterions within an N3-tridentate Schiff-base scaffold. Inorg. Chem. Front. 2018, 5 (3), 605-618.
    59. Petrosyants, S. P.; Ilyukhin, A. B.; Efimov, N. N.; Gavrikov, A. V.; Novotortsev, V. M., Self-assembly and SMM properties of lanthanide cyanocobaltate chain complexes with terpyridine as blocking ligand. Inorganica Chim. Acta 2018, 482, 813-820.
    60. Peng, G.; Zhang, Y.-Y.; Li, B.; Sun, X.-F.; Cai, H.-L.; Li, D.-J.; Gu, Z.-G.; Kostakis, G. E., Single molecule magnetic behaviour in lanthanide naphthalenesulfonate complexes. Dalton Trans. 2018, 47 (48), 17349-17356.
    61. Chorazy, S.; Rams, M.; Wang, J.; Sieklucka, B.; Ohkoshi, S. I., Octahedral Yb(III) complexes embedded in [CoIII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Trans. 2017, 46 (40), 13668-13672.
    62. Gavrikov, A. V.; Efimov, N. N.; Dobrokhotova, Z. V.; Ilyukhin, A. B.; Vasilyev, P. N.; Novotortsev, V. M., Novel mononuclear Ln complexes with pyrazine-2-carboxylate and acetylacetonate co-ligands: remarkable single molecule magnet behavior of a Yb derivative. Dalton Trans. 2017, 46 (35), 11806-11816.
    63. Jimenez, J.-R.; Diaz-Ortega, I. F.; Ruiz, E.; Aravena, D.; Pope, S. J. A.; Colacio, E.; Herrera, J. M., Lanthanide Tetrazolate Complexes Combining Single-Molecule Magnet and Luminescence Properties: The Effect of the Replacement of Tetrazolate N3 by β-Diketonate Ligands on the Anisotropy Energy Barrier. Chem. Eur. J. 2016, 22 (41), 14548-14559.
    64. Ren, M.; Xu, Z.-L.; Bao, S.-S.; Wang, T.-T.; Zheng, Z.-H.; Ferreira, R. A. S.; Zheng, L.-M.; Carlos, L. D., Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties. Dalton Trans. 2016, 45 (7), 2974-2982.
    65. Trifonov, A. A.; Shestakov, B.; Long, J.; Lyssenko, K.; Guari, Y.; Larionova, J., An Organoytterbium(III) Complex Exhibiting Field-Induced Single-Ion-Magnet Behavior. Inorg. Chem. 2015, 54 (16), 7667-7669.
    66. Soussi, K.; Jung, J.; Pointillart, F.; Guennic, B. L.; Lefeuvre, B.; Golhen, S.; Cador, O.; Guyot, Y.; Maury, O.; Ouahab, L., Magnetic and photo-physical investigations into DyIII and YbIII complexes involving tetrathiafulvalene ligand. Inorg. Chem. Front. 2015, 2 (12), 1105-1117.
    67. Huang, W.; Xu, J.; Wu, D.; Huang, X.; Jiang, J., Rhodamine-based field-induced single molecule magnets in Yb(III) and Dy(III) series. New J. Chem. 2015, 39 (11), 8650-8657.
    68. Fan, X.; Freslon, S.; Daiguebonne, C.; Polles, L. L.; Calvez, G.; Bernot, K.; Yi, X.; Huang, G.; Guillou, O., A family of lanthanide-based coordination polymers with boronic Acid as ligand. Inorg. Chem. 2015, 54 (11), 5534-5546.
    69. Lannes, A.; Luneau, D., New Family of Lanthanide-Based Complexes with Different Scorpionate-Type Ligands: A Rare Case Where Dysprosium and Ytterbium Analogues Display Single-Ion-Magnet Behavior. Inorg. Chem. 2015, 54 (14), 6736-6743.
    70. Boulon, M. E.; Cucinotta, G.; Luzon, J.; Degl'Innocenti, C.; Perfetti, M.; Bernot, K.; Calvez, G.; Caneschi, A.; Sessoli, R., Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew. Chem. Int. Ed. 2013, 52 (1), 350-354.
    71. Liu, J.-L.; Yuan, K.; Leng, J.-D.; Ungur, L.; Wernsdorfer, W.; Guo, F.-S.; Chibotaru, L. F.; Tong, M.-L., A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior. Inorg. Chem. 2012, 51 (15), 8538-8544.
    72. Guettas, D.; Montigaud, V.; Garcia, G. F.; Larini, P.; Cador, O.; Guennic, B. L.; Pilet, G., Fine Control of the Metal Environment within Dysprosium-Based Mononuclear Single-Molecule Magnets. Eur. J. Inorg. Chem. 2018, 333-339.
    73. Chilton, N. F.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P.; Soncini, A., An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Common. 2013, 4, 2551-2558.
    74. Sun, W.-B.; Yan, P.-F.; Jiang, S.-D.; Wang, B.-W.; Zhang, Y.-Q.; Li, H.-F.; Chen, P.; Wang, Z.-M.; Gao, S. High symmetry or low symmetry, that is the question - high performance Dy(III) single-ion magnets by electrostatic potential design. Chem. Sci. 2016, 7 (1), 684-691.
    75. Muetterties, E. L.; Guggenberger, L. J., Idealized Polytopal Forms. Description of Real Molecules Referenced to Idealized Polygons or Polyhedra in Geometric Reaction Path Form. J. Am. Chem. Soc. 1973, 96 (6), 1748-1756.
    76. Ruiz-Marti ́nez, A.; Alvarez, S., Stereochemistry of compounds with coordination number ten. Chem. Eur. J. 2009, 15 (30), 7470-7480.
    77. Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. Chem. Eur. J. 2005, 11 (5), 1479-1494.
    78. Long, J.; Habib, F.; Lin, P.-H.; Korobkov, I.; Enright, G.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Murugesu, M., Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. J. Am. Chem. Soc. 2011, 133 (14), 5319-5328.
    79. Xie, S.-F.; Huang, L.-Q.; Zhong, L.; Lai, B.-L.; Yang, M.; Chen, W.-B.; Zhang, Y. -Q.; Dong, W., Structures, Single-Molecule Magnets and Fluorescent Properties of Four Dinuclear Lanthanide Complexes Based on 4-Azotriazolyl-3-hydroxy-2-naphthoic Acid. Inorg. Chem. 2019, 58 (9), 5914-5921.

    無法下載圖示 校內:2025-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE