| 研究生: |
胡哲嘉 Hu, Che-Chia |
|---|---|
| 論文名稱: |
分解水光觸媒之半導體結構分析 Semiconductor Structure of Water-Splitting Photocatalysts |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 鈣鈦礦 、鉭酸鈉 、溶膠凝膠法 、固相法 、水熱法 、光觸媒 、水分解 、氧化鎳 、氮氧化鎵 、氮氧化銦鎵 、可見光 |
| 外文關鍵詞: | Perovskite, NaTaO3, Sol–Gel, Solid-State, Hydro-thermal, Water Splitting, Photocatalysis, NiO, Gallium Oxynitride, Visible-Light, Indium Doping. |
| 相關次數: | 點閱:148 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具半導體性質的光觸媒材料,在太陽能轉化分解水產生氫氣及氧氣具有相當的潛力。本研究分別以鉭酸鈉觸媒在紫外光的應用及氮氧化鎵在可見光的應用分別進行論述說明。在第一部份,本研究利用溶膠凝膠法、水熱法及固相法合成具不同結晶結構的鉭酸鈉粉末,並利用Rietveld法對XRD繞射峰進行模擬適套,再以TEM電子繞射做驗證。XRD模擬及適套結果顯示,溶膠凝膠法合成之鉭酸鈉為單斜晶系(monoclinic),其Ta–O–Ta鍵角為179度,水熱法及固相法合成的鉭酸鈉則為正交晶系(orthorhombic),鍵角則分別為163及157度。在以波長為304奈米入射光激發時,鉭酸鈉觸媒會放出約450奈米波長的光。而放出的螢光強度,則是以固相法合成的鉭酸鈉最強,溶膠凝膠法鉭酸鈉最弱,其趨勢和Ta–O–Ta鍵角相反。另一方面,光催化分解水的反應活性,則是和Ta–O–Ta鍵角趨勢相同.本研究顯示出Ta–O–Ta鍵角會影響光激發電子電洞對的分離速度,因此,若能改變Ta–O–Ta鍵角,將可有效提升發光效率及光催化反應活性。
另外,本研究藉由摻雜鉀原子於鉭酸鈉觸媒內部取代鈉原子,改變結晶結構並提升其光催化反應活性。本研究以溶膠凝膠法合成所需之鉭酸鈉鉀觸媒,其中鉀取代的比例範圍介於0–20 %。當鉀摻雜量在5 %時,可有效的改變鉭酸鈉的結構成為類立方晶系。類立方晶系的Ta–O–Ta鍵角為180度,能提升光生電子電洞對的遷移速度,使其傳導順暢並有效提高光反應活性。光致螢光光譜分析也證實了摻雜鉀可使鍵角接近180度,並能抑制電荷的再結合。但過量的鉀摻雜會導致雜相的生成進而使Ta–O–Ta鍵角偏離180度,並使缺陷產生而捕捉光生電子電洞對,因此其反應活性也隨之下降。本研究以適合的原子取代來改變鉭酸鈉的結晶結構並能有效提升光催化分解水反應活性。
在這一部份裡,利用氧化鎳做為共觸媒,含浸於溶膠凝膠法及固相法合成的鉭酸鈉觸媒表面做為共觸媒,來增加光催化反應活性。以3 wt. %氧化鎳含浸於溶膠凝膠法鉭酸鈉及0.7 wt. %氧化鎳含浸於固相法鉭酸鈉可獲得最高的反應活性。若過量或過少的共觸媒,則會導致活性下降。本研究利用XRD、HRTEM及電子繞射分析其結構。在低含浸量下,鈉及鎳離子會相互擴散,並在介面形成固態溶液型式的過渡區,並且無法觀察到明顯的氧化鎳顆粒。若再以氧化再還原處理,也無法有效提升光催化反應活性。因此當氧化鎳含浸量低時,會形成p型半導體氧化鎳及n型半導體鉭酸鈉相互摻雜的情況,並縮短介面空間電荷層的長度及加速電荷傳遞,而增加光催化反應活性。
第二部份中,本研究合成可見光光觸媒以提升太陽能頻譜的應用。首先為以氫氧化鎵做為前驅物在不同溫度下進行氮化反應合成氮氧化鎵(GaON),其能隙在2.2到2.8 eV之間,並在添加犧牲試劑於可見光照下,具有分解水製氫及製氧的能力,在625及700度下合成的觸媒,具有均勻的氮氧比,表示由氮2p及氧2p所混成的價電帶可有效提升載子的移動速,進而提升其光觸媒活性。而適當的氧氮-鎵的軌域混成,也是造成能隙縮小的原因,本研究以價帶控制的方式合成具備半導體性質的可見光光觸媒,並能有效提升太陽能的應用。
最後,延續前述的研究,以含銦的氫氧化鎵做為前驅物,在625度下進行氮化反應,利用銦的摻雜入氮氧化鎵內,在添加犧牲試劑於可見光照下,在摻雜濃度為In:(Ga+In)為0.5 %的情況下,具有最佳的分解水製氫及製氧能力,在更高比例的摻雜下,由XRD及TEM發現氮化銦的出現,而造成光觸媒活性的下降。本研究並利用XPS進行分析,發現由In/Ga及N/O混成的價電帶,具有較好的價帶混成(dispersion of valence state),也因此具有較佳的光觸媒活性。
Photocatalysts with semiconducting properties are attractive due to its potential on solar energy conversion. The physicochemical and optical properties of NaTaO3 and III-V group GaON were investigated in an attempt to improve the photocatalytic activities.
Perovskite-like NaTaO3 powders have potential applications in photoluminescence and photocatalysis. In the first section, sol–gel, hydro-thermal and solid-state methods were used to synthesize NaTaO3 powders of different crystalline structures, which were identified by Rietveld refinement simulation of X-ray diffraction patterns and transmission electron microscopic diffraction. The refinement results show that the sol–gel specimen has a monoclinic phase with a Ta–O–Ta bond angle of 179° while the hydro-thermal and solid-state specimens have an orthorhombic phase with bond angles of 163° and 157°, respectively. By excitation with a 304 nm light source, these NaTaO3 specimens show photoluminescence emission at ca. 450 nm. The photoluminescence intensity of the specimens had an order solid-state > hydro-thermal > sol–gel, which is opposite to that of the Ta–O–Ta bond angle. On the other hand, the photocatalytic activity of the NaTaO3 specimens in water splitting showed the same order as that of the Ta–O–Ta bond angle. This paper directly evidenced that the Ta–O–Ta bond angle affects the separation rate of the photo-induced charges, as well as that structure tuning of tantalates is achievable and crucial for applications in photoluminescence and photocatalysis.
In the second part of this study, the photocatalytic activity of NaTaO3 was improved by replacing some Na ions in the 12-coordinate sites with larger K ions. Na1-xKxTaO3 photocatalysts of x = 0−0.2 were synthesized with the sol–gel method. K-doping at x = 0.05 resulted in rectifying the distorted perovskite NaTaO3 to a pseudo-cubic phase as well as significantly promoting photocatalytic activity. The 180° bond angle of Ta−O−Ta in the pseudo-cubic phase may facilitate the separation of photogenerated charges for effective water splitting. Photoluminescence spectroscopic analysis confirmed that the flattened Ta−O−Ta linkage with K-doping suppresses the recombination of photogenerated charges. Further K-doping (with x > 0.05) leads to impurity formation, which bends the Ta−O−Ta linkage and creates defect states, lowering the photocatalytic activity of the K-doped NaTaO3. This study demonstrates that an appropriate ion replacement to tune the crystal structure can significantly promote electron transport in photocatalysts and thus their activity.
In the third part, sol–gel and solid-state synthesized NaTaO3 were loaded with NiO co-catalyst to enhance water splitting activity under UV illumination. Activity increased significantly with NiO loading and reached a maximum at 3 and 0.7 wt. %, respectively, for the sol–gel and solid-state synthesized NaTaO3. Beyond this point, photocatalytic activity decreased with further loading. Analysis using X-ray diffraction, high-resolution transmission electron microscopy, and diffuse reflectance spectroscopy shows that the interdiffusion of Na+ and Ni2+ cations created a solid-solution transition zone on the outer sphere of NaTaO3. For NiO contents less than 3 wt. %, no NiO clusters appeared on the NaTaO3 surface, and the reduction/oxidation pretreatment did not enhance photocatalytic activity. The high activity resulting from a low NiO loading suggests that the interdiffusion of cations heavily doped the p-type NiO and n-type NaTaO3, reducing the depletion widths and facilitating charge transfers through the interface barrier.
In the synthesis of wurtzite-like gallium oxynitride (GaON) photocatalysts, the nitridation of Ga(OH)3 with NH3 at temperatures between 550 and 900 ºC were employed. Ga(OH)3 is a more suitable precursor for GaON synthesis than Ga2O3, because its crystal lattice contains unoccupied 12–coordinate sites that facilitate ionic transportation during nitridation. The prepared GaON catalysts had band gap energies from 2.2 to 2.8 eV, and showed significant activities in the visible-light promoted evolution of H2 and O2 gases from methanol and AgNO3 solutions respectively. The maximum H2 and O2 evolution rates occurred for catalysts synthesized at 625 and 700 ºC, respectively. These active catalysts had an N/O atomic ratio close to unity, suggesting that extensive hybridization of N2p and O2p orbitals promotes charge mobility, and thus enhances photocatalytic activity. This study highlights the interesting possibility of synthesizing a large diversity of visible-light active, IIIoxynitride catalysts using this Ga(OH)3 route.
Indium was introduced to activate gallium oxynitride in this section. Visible-light active Indium-doped GaON with a wurtzite-like structure were synthesized from nitridation of In(OH)3-containing Ga(OH)3 under NH3 flow at 625 ºC and used for photocatalytic water splitting. This synthesis method yielded a homogeneous In distribution in gallium oxynitride solid solutions for Ga replacement levels of up to 1 %. An appropriate amount of In substitution for Ga, approximately 0.5 %, significantly enhanced the activity of gallium oxynitride in the visible-light induced evolutions of H2 and O2 gases from methanol and AgNO3 solutions, respectively. X-ray photoelectron spectroscopy showed that In-doping increased the dispersion of hybridized orbitals in the valence band of gallium oxynitride. A higher degree of In-doping resulted in nucleation of InN-like oxynitride on the gallium oxynitride surface and degraded the photocatalytic activity. This study demonstrates that band structure engineering of gallium oxynitride powders with In-doping is a facile way to obtain visible-light sensitive photocatalysts.
Chapter 1
[1] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
[2] A. Fujishima and K. Honda, Nature, 1972, 238, 37.
[3] C. C. Lo, C. W. Huang, C. H. Liao and Jeffrey C. S. Wu, Int. J. Hydro. Energy, 2010, 35, 1523.
[4] G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc., 1977, 99, 7189.
[5] H. V. Damme and W. K. Hall, J. Am. Chem. Soc., 1979, 101, 4373.
[6] T. Kawai and T, Sakata, Chem. Phys. Lett., 1980, 72, 87.
[7] A. J. Nozik, Appl. Phys. Lett., 1977, 30, 567.
[8] M. Grätzel, Nature, 2001, 414, 338.
[9] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
[10] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
Chapter 2
[1] G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc., 1977, 99, 7189.
[2] H. V. Damme and W. K. Hall, J. Am. Chem. Soc., 1979, 101, 4373.
[3] K. Rajeshwar, N. R. de Tacconi and C. R. Chenthamarakshan; Chem. Mater., 2001, 13, 2765.
[4] P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
[5] A. Fujishima and K. Honda, Nature, 1972, 238, 37.
[6] A. J. Nozik, Appl. Phys. Lett., 1977, 30, 567.
[7] S. Sato and J. M. White, Chem. Phys. Lett., 1980, 72, 83.
[8] M. Grätzel, Nature, 2001, 414, 338.
[9] K. Sayama and H. Arakawa, J. Chem. Soc., Chem. Commun., 1992, 150.
[10] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
[11] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
[12] H. Kato and A. Kudo, Chem. Phys. Lett., 1998, 295, 487.
[13] H. Kato and A. Kudo, Catal. Lett., 1999, 58, 153.
[14] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
[15] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
[16] A. Yamakata, T. Ishibashi, H. Kato and A. Kudo, J. Phys. Chem. B, 2003, 107, 14383.
[17] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
[18] A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chem. Lett., 2004, 33, 1260.
[19] Y. He, Y. Zhu and N. Wu, J. Sol. Stat. Chem., 2004, 177, 3868.
[20] Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo and H. Kato, J. Sol. Stat. Chem., 2004, 177, 4205.
[21] A. Iwase, H. Kato and A. Kudo, Chem. Lett., 2005, 34, 946.
[22] A. Iwase, H. Kato and A. Kudo, Catal. Lett., 2006, 108, 7.
[23] D. G. Porob and P. A. Maggard, J. Sol. Stat. Chem., 2006, 179, 1727.
[24] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
[25] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
[26] H. Yoshida, S. Kato, K. Hirao, J. Nishimoto and T. Hattori, Chem. Lett., 2007, 36, 430.
[27] Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura and K. Domen, Bull. Chem. Soc. Jpn., 2007, 80, 423.
[28] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
[29] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
[30] H. Fu, S. Zhang, L. Zhang and Y. Zhu, Mater. Res. Bull., 2008, 43, 864.
[31] H. W. Kang, E. J. Kim and S. B. Park, Int. J. Photoenergy, 2008, 519643.
[32] A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.
[33] Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
[34] X. Wang, G. Liu, Z. G. Chen, F. Li, G. Q. Lu and H. M. Cheng, Chem. Lett., 2009, 38, 214.
[35] A. Iwase, K. Saito and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 514.
[36] M. Maruyama, A. Iwase, H. Kato, A. Kudo and H. Ohishi, J. Phys. Chem. C, 2009, 113, 13918.
[37] X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.
[38] L. M. Torres-Martínez, A. Cruz-López, I. Juárez-Ramírez and M. E. M. La Rosa, J. Hazard. Mater., 2009, 165, 774.
[39] S. C. Yan, Z. Q. Wang, Z. S. Li and Z. G. Zou, Sol. Stat. Ion., 2009, 180, 1539.
[40] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
[41] X. Wang, H. Bai, Y. Meng, Y. Zhao, C. Tang and Y. Gao, J. Nanosci. Nanotech., 2010, 10, 1788.
[42] H. W. Kang and S. B. Park, Adv. Powder Tech., 2010, 21, 106.
[43] X. Yi and J. Li, J. Sol-Gel Sci. Tech., 2010, 53, 480.
[44] K. Teramura, S. Okuoka, H. Tsuneoka, T. Shishido and T. Tanaka, Appl. Catal. B, 2010, 96, 565.
[45] K. Shimura, S. Kato, T. Yoshida, H. Itoh, T. Hattori and H. Yoshida, J. Phys. Chem. C, 2010, 114, 3493.
[46] M. Yang, X. Huang, S. Yan, Z. Li, T. Yu and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
[47] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
[48] I. G. Ismailzade, Sov. Phys. Crystallogr., 1963, 7, 584.
[49] C. H. Perry and N. E. Tornberg, Sol. Stat. Commun., 1968, 6, R16.
[50] C. H. Perry and N. E. Tornberg, Phys. Rev., 1969, 183, 595.
[51] V. M. Lebedev, Y. N. Venevtse and G. S. Zhdanov, Sov. Phys. Crystallogr., 1970, 14, 931.
[52] G. Kaindl and D. Salomon, Bull. Am. Phys. Soc., 1972, 17, 681.
[53] M. Ahtee and L. Unonius, Acta Crystallogr. Sec. A, 1977, 33, 150.
[54] G. Wortmann, G. Trollmann, A. Heidemann and G. M. Kalvius, Hyper. Inter., 1978, 4, 610.
[55] K. Nassau, C. A. Wang and M. Grasso and J. Am. Ceram. Soc., 1979, 62, 503.
[56] A. Sadel, R. Vondermuhll, J. Ravez and P. Hagenmuller, Mater. Res. Bull., 1980, 15, 1789.
[57] M. Ahtee and C. N. W. Darlington, Acta Crystallogr. Sec B, 1980, 36, 1007.
[58] Y. Yacoby and A. Agranat, J. De Physi., 1986, 47, 107.
[59] N. F. Fedorov, O. V. Melnikova, A. P. Pivovarova, L. E. Vladimirskaya, N. V. Starkova and I. E. Polevaya, Inorg. Mater., 1989, 25, 416.
[60] A. Aleksandrowicz and K. Wojcki, Ferroelec., 1989, 99, 105.
[61] B. Rechav, N. Sicron, Y. Yacoby, B. Ravel, M. Newville and E. A. Stern, Physica C, 1993, 209, 55.
[62] B. Rechav, Y. Yacoby, E. A. Stern, J. J. Rehr and M. Newville, Phys. Rev. Lett., 1994, 72, 1352.
[63] M. Wiegel, M. H. J. Emond, E. R. Stobbe and G. Blasse, J. Phys. Chem. Sol., 1994, 55, 773.
[64] M. E. Villafuerte-Castrejon, G. Munoz, H. D. Sinclair, A. Munoz and J. Rubio, Ferroelec. Lett. Sec., 1996, 21, 127.
[65] B. J. Kennedy, A. K. Prodjosantoso and C. J. Howard, J. Phys.: Condens. Matter, 1999, 11, 6319.
[66] R. P. Singh, M. J. Miller and J. N. Dann, Powder Diffrac., 1999, 14, 231.
[67] F. Schlottig, J. Schreckenbach and G. Marx, Fresen. J. Anal. Chem., 1999, 363, 209.
[68] C. N. W. Darlington and K. S. Knight, Acta Crystallogr. Sec. B, 1999, 55, 24.
[69] S. Y. Istomin, G. Svensson, H. Hannerz and J. Köhler, J. Sol. Stat. Chem., 2000, 154, 427.
[70] M. D. Aguas and I. P. Parkin, J. Mater. Sci. Lett., 2001, 20, 57.
[71] Y. X. Wang, W. L. Zhong, C. L. Wang and P. L. Zhang, Sol. Stat. Commun., 2001, 120, 137.
[72] S. Y. Istomin, G. Svensson and J. Köhler, Sol. Stat. Sci., 2002, 4, 191.
[73] J. A. Nelson and M. J. Wagner, J. Am. Chem. Soc., 2003, 125, 332.
[74] R. H. Mitchell and R. P. Liferovich, J. Sol. Stat. Chem., 2004, 177, 4420.
[75] X. M. Chen, Y. T. Lu, D. Z. Jin and X. Q. Liu, J. Electroceram., 2005, 15, 21.
[76] Y. Lee, T. Watanabe, T. Takata, J. N. Kondo, M. Hara, M. Yoshimura and K. Domen, Chem. Mater., 2005, 17, 2422.
[77] A. Yamakata, T. Ishibashi, K. Takeshita and H. Onishi, Top. Catal., 2005, 35, 211.
[78] J. Xu, D. Xue and C. Yan, Mater. Lett., 2005, 59, 2920.
[79] S. E. Ashbrook, L. Le Pollès, R. Gautier, C. J. Pickard and R. I. Walton, Phys. Chem. Chem. Phys., 2006, 8, 3423.
[80] J. Chen, L. Hu, J. Zhao, C. Tang and Y. Li, Rare Metals, 2006, 25, 69.
[81] V. Samuel, A. B. Gaikwad and V. Ravi, Bull. Mater. Sci., 2006, 29, 123.
[82] C. Herzog, S. Aravazhi, A. Guarino, A. Schneider, G. Poberaj and P. Günter, J. Opt. Soc. Am. B, 2007, 24, 829.
[83] N. G. Teixeira, A. Dias and R. L. Moreira, J. Europ. Ceram. Soc., 2007, 27, 3683.
[84] C. Herzog, S. Reidt, G. Poberaj and P. Günter, Optics Express, 2007, 15, 7642.
[85] G. Jiao, H. Fan, L, Liu and W. Wang, Mater. Lett., 2007, 61, 4185.
[86] M. Spreitzer, J. König, B. Jančar and D. Suvorov, IEEE Trans., 2007, 54, 2617.
[87] J. König, B. Jančar and D. Suvorov, J. Am. Ceram. Soc., 2007, 90, 3621.
[88] Z. H. Li, G. Chen and J. W. Liu, Sol. Stat. Commun., 2007, 143, 295.
[89] H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu and Y. Jiang, Appl. Phys. B, 2008, 91, 75.
[90] B. A. Kjarsgaard and R. H. Mitchell, Canad. Miner., 2008, 46, 981.
[91] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
[92] X. Zhou, Y. Chen, H. Mei, Z. Hu and Y. Fan, Appl. Surf. Sci., 2008, 255, 2803.
[93] Y. C. Lee, H. Teng, C. C. Hu and S. Y. Hu, Electrochem. Sol. Stat. Lett., 2008, 11, P1.
[94] V. Shanker, S. L. Samal, G. K. Pradhan, C. Narayana and A. K. Ganguli, Sol. Stat. Sci., 2009, 11, 562.
[95] W. Wunderlich, J. Nucl. Mater., 2009, 389, 57.
[96] W. Wunderlich and S. Soga, J. Ceram. Proce. Res., 2010, 11, 233.
[97] Y. Cui, L. Liu, Y. Chen, D. Yu, X. Zhou, N. Xu and W. Ding, Sol. Stat. Sci., 2010, 12, 232.
[98] E. E. Eyi and S. Cabuk, Philosophi. Magaz., 2010, 90, 2965.
[99] M. Jansen and H. P. Letschert, Nature, 2000, 404, 980.
[100] G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Chem. Commun., 2002, 1698.
[101] G. Hitoki, T. Takata, J. N. Kondo, M. Hara and K. Domen, Chem. Lett., 2002, 31, 736.
[102] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B, 2003, 107, 1798.
[103] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2003, 107, 791.
[104] D. Yamasita, T. Takata, M. Hara, J. N. Kondo and K. Domen, Sol. Stat. Ion., 2004, 172, 591.
[105] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nature Mater., 2006, 5, 782.
[106] J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydro. Energy, 2008, 33, 2897.
[107] C. C. Hu, J. N. Nian and H. Teng, Sol. Energ. Mater. Sol. Cells, 2008, 92, 1071.
[108] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.
[109] K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. B, 2005, 109, 21915.
[110] K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. B, 2006, 110, 13107.
[111] K. Maeda, K. Teramuar, D. Lu, N. Saito, Y. Inoue and K. Domen, Angew. Chem. Int. Ed, 2006, 45, 7806.
[112] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. C, 2007, 111, 7554.
[113] W. Wei, Y. Dai, K. Yang, M. Guo and B. Huang, J. Phys. Chem. C, 2008, 112, 15915.
[114] L. L. Jensen, J. T. Muckerman and M. D. Newton, J. Phys. Chem. C, 2008, 112, 3439.
[115] N. Sakamoto, H. Ohtsuka, T. Ikeda, K. Maeda, D. Lu, M. Kanehara, K. Teramura, T. Teranishi and K. Domen, Nanoscale, 2009, 1, 106.
[116] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.
[117] H. Chen, L. Wang, J. Bai, J. C. Hanson, J. B. Warren, J. T. Muckerman, E. Fujita and J. A. Rodriguez, J. Phys. Chem. C, 2010, 114, 1809.
[118] M. Goga, R. Seshadri, V. Ksenofontov, P. Gütlich and W. Tremel, Chem. Commun., 1999, 979.
[119] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2002, 124, 13547.
[120] I. Tsuji, H. Kato and A. Kudo, Chem. Mater., 2006, 18, 1969.
[121] S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac and K. Yoshino, J. Chem. Soc., Chem. Commun., 1985, 8, 474.
[122] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature Mater., 2009, 8, 76.
[123] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.
[124] A. R. West; “Basic Solid State Chemistry”, 2nd ed., Wiley, USA, 1999, p. 319.
[125] H. Zhang, X. Jia, Y. Yan, Z. Liu, D. Yang and Z. Li, Mater. Res. Bull., 2004, 39, 839.
[126] S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean and J. C. Champarnaud-Mesjard, J. Sol-Gel Tech., 2007, 41, 79.
Chapter 3
[1] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
[2] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
[3] B. D. Cullity and S. R. Stock; “Elements of X-Ray Diffraction” 3rd ed. Prentice Hall.
[4] H. M. Rietveld, Acta Crystallogr., 1967, 22, 151.
[5] H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.
[6] P. M. Woodward, A. W. Sleight and T. Vogt; J. Phys. Chem. Sol., 1995, 56, 1305.
[7] B. H. Toby, J. Appl. Crystallogr., 2001, 34, 210.
Chapter 4
[1] J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 2003, 107, 7965.
[2] J. Sato, H. Kobayashi, and Y. Inoue, J. Phys. Chem. B, 2003, 107, 7970.
[3] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, and K. Domen, J. Phys. Chem. B, 2005, 109 20504.
[4] A. Kudo, Int. J. Hydrogen Energy, 2006, 31, 197.
[5] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
[6] H. Kato and A. Kudo, Chem. Phys. Lett., 1998, 295, 487.
[7] T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, J. Phys. Chem. B, 1999, 103, 1.
[8] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
[9] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
[10] H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
[11] H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
[12] H. Kato and A. Kudo, Catal. Today, 2003, 78, 561.
[13] A. Iwase, H. Kato, and A. Kudo, Chem. Lett., 2005, 34, 946.
[14] D. G. Porob and P. A. Maggard, J. Solid State Chem., 2006, 179, 1727.
[15] H. Kato and A. Kudo, Chem. Lett., 1999, 28, 1207.
[16] A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
[17] M. Yoshino, M. Kakihana, W. S. Cho, H. Kato, and A. Kudo, Chem.Mater., 2002, 14, 3369.
[18] J. Ye, Z. Zou, and A. Matsushita, Int. J. Hydrogen Energy, 2003, 28, 651.
[19] T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, and Y. Takita, J. Photochem. Photobiol. A, 2004, 167, 149.
[20] K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, and A. Kudo, J. Catal., 2005, 232, 102.
[21] Z. Zou, J. Ye, and H. Arakawa, Chem. Phys. Lett., 2000, 332, 271.
[22] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature, 2001, 414, 625.
[23] Z. Zou and H. Arakawa, J. Photochem. Photobiol. A,,2003, 158, 145.
[24] K. Sayama, H. Arakawa, and K. Domen, Catal. Today, 1996, 28, 175.
[25] A. Kudo and H. Kato, Chem. Lett., 1997, 26, 867.
[26] Y. Yakahara, J. N. Kondo, D. Lu, and K. Domen, Solid State Ionics, 2002, 151, 305.
[27] M. Hara, T. Takata, J. N. Kondo, and K. Domen, Catal. Today, 2004, 90, 313.
[28] M. Machida, T. Mitsuyama, K. Ikeue, S. Matsushima, and M. Arai, J. Phys. Chem. B, 2005, 109, 7801.
[29] K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, and K. Toda, Chem. Mater., 2005, 17, 5161.
[30] M. Yashima, Y. Lee, and K. Domen, Chem. Mater., 2007, 19, 588.
[31] W. H. Lin, C. Cheng, C. C. Hu, and H. S. Teng, Appl. Phys. Lett., 2006, 89, 211904.
[32] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
[33] B. J. Kennedy, A. K. Prodjosantoso, and C. J. Howard, J. Phys. Condens. Matter, 1999, 11, 6319.
[34] Y. C. Lee, H. Teng, C. C. Hu, and S. Y. Hu, Electrochem. Solid State Lett., 2008, 11, P1–4.
[35] A. M. Glazer, Acta Cryst. B, 1972, 28, 3384.
[36] P. M. Woodward, Acta Cryst. B, 1997, 53, 32.
[37] I. G. Ismailzade, Kristallografiya, 1962, 7, 718.
[38] I. G. Ismailzade, Sov. Phys. Crystallogr., 1963, 7, 584.
[39] M. Ahtee and L. Unonius, Acta Cryst. A, 1977, 33, 150.
[40] M. Ahtee and C. N. W. Darlington, Acta Cryst. B, 1980, 36, 1007.
[41] C. N. W. Darlington and K. S. Knight, Acta Cryst. B, 1999, 55, 24.
[42] Y. X. Wang, W. L. Zhong, C. L. Wang, and P. L. Zhang, Solid State Commun., 2001, 120, 137.
[43] J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, Int. J. Hydrogen Energy, 2007, 32, 2269.
[44] N. G. Teixeira, A. Dias, and R. L. Moreira, J. Eur. Ceram. Soc., 2007, 27, 3683.
[45] C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2004, 87, 2080.
[46] B. H. Toby, J. Appl. Cryst., 2001, 34, 210.
[47] Program Package Ca.R.Ine version 3.1 Crystallography, Distributed by Ca.R.Ine Crystallography, 17. rue du Moulin do Roy, 60300 Senlis, France.
[48] M. Wiegel, M. Hamoumi, and G. Blasse, Mater. Chem. Phys., 1994, 36, 289.
[49] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
[50] N. Hamada, H. Sawada, I. Solovyev, and K. Terakura, Physica B, 1997, 237–238, 11.
[51] H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward, J. Solid State Chem., 2003, 175, 94.
[52] H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem., 2004, 43, 1667.
[53] Z. H. Li, G. Chen, and J. W. Liu, Solid State Commun., 2007, 143, 295.
[54] R. Leonelli and J. L. Brebner, Phys. Rev. B, 1986, 33, 8649.
[55] V. S. Vikhnin and S. Kapphan, Phys. Solid State, 1998, 40, 834.
[56] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik, and J. Rosa, J. Appl. Phys., 2003, 93, 6056.
[57] V. S. Vikhnin, Phys. Solid State, 2005, 47, 1548.
[58] E. Longo, E. Orhan, F. M. Pontes, C. D. Pinheiro, E. R. Leite, J. A. Varela,P. S. Pizani, T. M. Boschi, F. Lanciotti Jr., A. Beltra´ n, and J. Andre´ s, Phys. Rev. B, 2004, 69, 125115.
[59] L. Grigorjeva, D. K.Millers, V. Pankratov, R. T.Williams, R. I. Eglitis, E. A. Kotomin, and G. Borstel, Solid State Commun., 2004, 129, 691.
[60] E. Orhan, J. A. Varela, A. Zenatti, M. F. C. Gurgel, F.M. Pontes, E. R. Leite, E. Longo, P. S. Pizani, A. Beltra´ n, and J. Andre´ s, Phys. Rev. B, 2005, 71, 085113.
[61] W. F. Zhang, J. Tang, and J. Ye, Chem. Phys. Lett., 2006, 418, 174.
[62] W. F. Zhang, J. Tang, and J. Ye, J. Mater. Res., 2007, 22, 1859.
Chapter 5
[1] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
[2] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
[3] O. K. Varghese and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 2008, 92, 374.
[4] B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, J. Mater. Chem., 2008, 18, 2298.
[5] S. Ekambaram, J. Alloys and Comp., 2008, 448, 238.
[6] R. M. N. Yerga, M. C. A. Galvan, F. del Valle, J. de la Mano and J. L. G. Fierro, ChemSusChem., 2009, 2, 471.
[7] T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.
[8] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.
[9] A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
[10] T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi and Y. Takita, J. Photochem. Photobio. A: Chem., 2004, 167, 149.
[11] Y. X. Li, G. Chen, H. J. Zhang, Z. H. Li and J. X. Sun, J. Sol. Stat. Chem., 2008, 181, 2653.
[12] A. Kumar, M. Kolaski, H. M. Lee and K. S. Kim, J. Phys. Chem. A, 2008, 112, 5502.
[13] K. Inaba, S. Suzuki, Y. Noguchi, M. Miyayama, K. Toda and M. Sato, Eur. J. Inorg. Chem., 2008, 35, 5471.
[14] M. Nyman, M. A. Rodriguez, L. E. S. Rohwer, J. E. Martin, M. Waller and F. E. Osterloh, Chem. Mater., 2009, 21, 4731.
[15] H. Huang, D. Li, Q. Lin, Q. Shao, W. Chen, Y. Hu, Y. Chen and X. Fu, J. Phys. Chem. C, 2009, 113, 14264.
[16] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti and K. Domen, J. Phys. Chem. C, 2009, 113, 4940.
[17] Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536.
[18] C. C. Wua, W. K. Cheng, W. S. Chang and T. C. Lee, J. Taiwan Int. Chem. Eng., 2009, 40, 180.
[19] K. Inaba, S. Suzuki, Y. Noguchi and M. Miyayama, J. Alloys and Comp., 2009, 486, 78.
[20] T. Ishihara, H. Nishiguchi, K. Fukamachi and Y. Takita, J. Phys, Chem. B, 1999, 103, 1.
[21] T. Takata and K. Domen, J. Phys. Chem. C, 2009, 113, 19386.
[22] Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
[23] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
[24] H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
[25] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
[26] A. Yamakata, T. Ishibashi, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. B, 2003, 107, 14383.
[27] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
[28] C. C. Hu and H. Teng, Appl. Cata., A, 2007, 331, 44.
[29] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 13, 2269.
[30] A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.
[31] A. Iwase, K. Saito and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 514.
[32] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
[33] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
[34] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
[35] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
[36] Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
[37] X. Li and J. L. Zang, J. Phys. Chem. C, 2009, 113, 19411.
[38] Z. G. Yi and J. H. Ye, J. Appl. Phys., 2009, 106, 074910.
[39] S. E. Ashbrook, L. L. Pollés, R. Gautier, C. J. Pickard and R. I. Walton, Phys. Chem. Chem. Phys., 2006, 8, 3423.
[40] M. D. Argyle, K. Chen, C. Resini, C. Krebs, A. T. Bell and E. Iglesia, J. Phys. Chem. B, 2004, 108, 2345.
[41] X. Fang, Y. Bando, G. Shen, C. Ye, U. K. Gautam, P. M. F. J. Costa, C. Zhi, C. Tang and D. Golberg, Adv. Mater., 2007, 19, 2593.
[42] M. Maruyama, A. Iwase, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. C, 2009, 113, 13918.
[43] Y. C. Lee, H. Teng, C. C. Hu and S. Y. Hu, Electro. Sol. Stat. Lett., 2008, 11, P1.
[44] S. Cabuk, H. Akkus and A. M. Mamedov, Physica B, 2007, 394, 81.
[45] M. Wiegel, M. H . J. Emond, E. R. Stobbe and G. Blasse, J. Phys. Chem. Solids, 1994, 55, 773.
[46] K. Nasu, Phys. Rev. B, 2003, 67, 174111.
[47] V. S. Vikhnin and S. Kapphan, Phys. Sol. Stat., 1998, 40, 834.
[48] V. S. Vikhnin, Phys. Sol. Stat., 2005, 47, 1548.
[49] R. Leonelli and J. L. Brebner, Phys. Rev. B, 1986, 33, 8649.
[50] M. Aguilar and F. Agullo-Lopez, J. Appl. Phys., 1982, 53, 9009.
[51] T. Hasegawa, M. Shirai and K. Tanaka, J. Lumin., 2000, 87-89, 1217.
[52] R. I. Eglitis, E. A. Kotomin and G. Borstel, J. Phys.: Condens. Mater., 2002, 14, 3735.
[53] Y. Li, X. Fang, N. Koshizaki, T. Sasaki, L. Li, S. Gao, Y. Shimizu, Y. Bando and D. Golberg, Adv. Funct. Mater., 2009, 19, 2467.
[54] V. A. Trepakov, V. S. Vikhnin, S. Kapphan, L. Jastrabik, J. Licher and P. P. Syrnikov, J. Lumin., 2000, 87-89, 1126.
[55] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik and J. Rosa, J. Appl. Phys., 2003, 93, 6056.
[56] S. E. Kapphan, A. I. Gubaev and V. S. Vikhnin, Phys. Stat. Sol. C, 2005, 2, 128.
[57] B. Bouma and G. Blasse, J. Phys. Chem. Sol., 1995, 56, 261.
[58] X. Fang, C. H. Ye, X. S. Peng, Y. H. Wang, Y. C. Wu and L. D. Zhang, J. Mater. Chem., 2003, 13, 3040.
[59] X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, J. Mater. Chem., 2008, 18, 509.
[60] X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide and D. Golberg, Adv. Mater., 2009, 21, 2034.
Chapter 6
[1] R. M. N. Yerga, M. C. A. Galvan, F. Del Valle, J. A. de la Mano and J. L. G. Fierro, ChemSusChem, 2009, 2, 471.
[2] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
[3] A. Galinska and J. Walendziewski, Energy & Fuels, 2005, 19, 1143.
[4] J. C. Escudero, S. Cervera-March, J. Gimenez and R. Simarro, J. Catal., 1990, 123, 319.
[5] R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys., 2005, 7, 2241.
[6] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 2001, 414, 625.
[7] A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
[8] K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda, Chem. Mater., 2005, 17, 5161.
[9] H. Y. Lin, T. H. Lee and C. Y. Sie, Int. J. Hydro. Energy, 2008, 33, 4055.
[10] H. Kato and A. Kudo, Catal. Lett., 1999, 58, 153.
[11] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
[12] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
[13] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
[14] A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chem. Lett., 2004, 33, 1260.
[15] Y. He, Y. Zhu and N. Wu, J. Solid State Chem., 2004, 177, 3868.
[16] D. G. Prob and P. A. Maggard, J. Solid State Chem., 2006, 179, 1727.
[17] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
[18] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
[19] Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura and K. Domen, Bull. Chem. Soc. Jpn., 2008, 80, 423.
[20] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
[21] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
[22] J. M. Lehn, J. P. Sauvage, R. Ziessel and Nouv. J. Chim., 1980, 4, 623.
[23] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
[24] Z. G. Li, Y. X. Wang, J. W. Liu, G. Chen, Y. X. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
[25] A. Iwase, H. Kato and A. Kudo, Catal. Lett., 2006, 108, 7.
[26] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, Chem. Lett., 2008, 37, 138.
[27] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
[28] J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee and M. R. Hoffmann, J. Mater. Chem., 2008, 18, 2371.
[29] K. Domen, S. Naito, T. Onishi and K. Tamaru, Chem. Phys. Lett., 1982, 92, 433.
[30] K. Domen, A. Kudo and T. Ohnishi, J. Catal., 1986, 102, 92.
[31] A. Kudo, A. Tanaka, K. Domen and T. Onishi, J. Catal., 1988, 111, 296.
[32] R. K. Selvan, V. Krishnan, C. O. Augustin, H. Bertagnolli, C. S. Kim and A. Gedanken, Chem. Mater., 2008, 20, 429.
[33] A. R. West, Basic Solid State Chemistry (2nd Ed.), John Wiley & Sons LTD, New York, 1999, p. 319.
[34] K. Klier and K. Kuchynka, J. Catal., 1966, 6, 62.
[35] A. Bielański and M. Najbar, J. Catal., 1972, 25, 398.
[36] M. Breysse, B. Claudel, L. Faure, M. Guenin and R. J. J. Williams, J. Catal., 1976, 45, 137.
[37] A. Bielański and J. Haber, Catal. Rev., 1979, 19, 1.
[38] D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim and J. S. Lee, J. Catal., 2000, 193, 40.
[39] K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 1986, 90, 292.
[40] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
[41] J. J. Zou, C. J. Liu and Y. P. Zhang, Langmuir, 2006, 22, 2334.
[42] W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem., 1994, 98, 13669.
[43] R. W. Cairns and E. Ott, J. Am. Chem. Soc., 1933, 55, 527.
[44] K. E. Karakitsou and X. E. Verykios, J. Phys. Chem., 1993, 97, 1184.
[45] A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Chem. Phys. Lett., 2001, 336, 424.
[46] J. Disdier, J. Herrmann and P. Pichat, J. Chem. Soc., Farad. Trans., 1983, 79, 651.
[47] C. J. Yang, J. Park and Y. R. Cho, Adv. Engin. Mater., 2007, 9, 88.
[48] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
[49] B. G. Streetman, S. Banerjee, Solid State Electronic Devices (5th Ed.), Prentice Hall, Upper Saddler River, NJ, 2000, Chapter 5, p. 142.
[50] D. Wang, Z. Zou and J. Ye, Chem. Mater., 2005, 17, 3255.
[51] A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani and L. Palmisano, Catal. Today, 2002, 75, 87.
[52] A. Di Paola, E. García-López, G. Marcì, C. Martin, L. Palmisano, V. Rives and A. M. Venezia, Appl. Catal. B, 2004, 48, 223.
[53] M. Bellardita, M. Addamo, A. Di Paola and L. Palmisano, Chem. Phys., 2007, 339, 94.
Chapter 7
[1] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
[2] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
[3] H. Tributsch, Int. J. Hydro. Energy, 2008, 33, 5911.
[4] J. Li and J. Z. Zhang, Coord. Chem. Rev., 2009, 253, 3015.
[5] E. Serrano, G. Rus and J. Garcia-Martinez, Renew. Sust. Energy Rev., 2009, 13, 2373.
[6] Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
[7] S. Zhang, G. Zhang, S. Yu, X. Chen and X. Zhang, J. Phys. Chem. C, 2009, 113, 20029.
[8] C. C. Hu and H. Teng, Appl. Catal. A: Gen., 2007, 331, 44.
[9] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
[10] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
[11] X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.
[12] M. Yang, X. Huang, S. Yan, Z. Li, T. Yu, and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
[13] J. Lv, T. Kako, Z. Li, Z. Zou and J. Ye, J. Phys. Chem. C, 2010, 114, 6157.
[14] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
[15] J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydro. Energy, 2008, 33, 2897.
[16] C. C. Hu, J. N. Nian and H. Teng, Sol. Energy Mater. Sol. Cells, 2008, 92, 1071.
[17] C. K. Lee, M. D. Lyu, S. S. Liu, and H. C. Chen, J. Taiwan Inst. Chem. Egrs., 2009, 40, 463.
[18] P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
[19] S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler and J. A. Turner, J. Electrochem. Soc., 1995, 142, L238.
[20] I. M. Huygens, K. Strubbe, W. P. Gomes, J. Electrochem. Soc., 2000, 147, 1797.
[21] T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama and A. Yoshida, J. Mater. Sci., 2006, 41, 3527.
[22] N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen and K. Sato, Chem. Lett., 2006, 5, 796.
[23] N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato and Y. Inoue, Catal. Today, 2007, 129, 407.
[24] K. Fujii, K. Kusakabe and K. Ohkawa, Jpn. J. Appl. Phys., 2005, 44, 7433.
[25] K. Kamata, K. Maeda, D. Lu, Y. Kako and K. Domen, Chem. Phys. Lett., 2009, 470, 90.
[26] H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira and Y. Inoue, J. Phys. Chem. B, 2005, 109, 22995.
[27] J. Sato, N. Saito, H. Nishiyama and Y. Inoue, J. Phys. Chem. B, 2001, 105, 6061.
[28] C. C. Wu, K. W. Cheng, W. S. Chang and T. C. Lee, J. Taiwan Inst. Chem. Egrs., 2009, 40, 180.
[29] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Phys. Chem. C, 2009, 113, 1560.
[30] T. L. Li, and H. Teng, J. Mater. Chem., 2010, 20, 3656.
[31] R. F. Davis, Proc. I.E.E.E., 1991, 79, 702.
[32] C. C. Chen and C. C. Yeh, Adv. Mater., 2000, 12, 738.
[33] G. L. Martinez, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electron. Mater., 2000, 29, 325.
[34] R. García, G. A. Hirata, M. H. Farías and J. McKittrick, Mater. Sci. Engin.: B, 2002, 90, 7.
[35] B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars and U. K. Mishra, J. Mater. Chem., 2005, 15, 1891.
[36] W. C. Lan, C. D. Tsai and C. W. Lan, J. Taiwan Inst. Chem. Engrs., 2009, 40, 475.
[37] T. Futatsuki, T. Oe, H. Aoki, N. Komatsu, C. Kimura and T. Sugino, Jpn. J. Appl. Phys., 2009, 48, 04C006.
[38] T. Thomas, X. Guo, M. Chandrashekhar, C. B. Poitras, W. Shaff, M. Dreibelbis, J. Reiherzer, K. Li, F. J. Disalvo, M. Lipson and M. G. Spencer, J. Crys. Growth, 2009, 311, 4402.
[39] P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou and Y. Bai, Appl. Phys. Lett., 2009, 95, 211907.
[40] B. Mazumder and A. L. Hector, Top. Catal., 2009, 52, 1472.
[41] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2005, 109, 20504.
[42] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.
[43] X. Sun, K. Maeda, M. L. Faucheur, K. Teramura and K. Domen, Appl. Catal. A: Gen., 2007, 327, 114.
[44] T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, J. Phys. Chem. C, 2007, 111, 18853.
[45] K. Maeda, H. Hashiguchi, H. Masuda, R. Abe and K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
[46] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.
[47] K. Maeda, H. Masuda and K. Domen, Catal. Today, 2009, 147, 173.
[48] H. Y. Chen, W. Wen, Q. Wang, J. C. Hanson, J. T. Muckerman, E. Fujita, A. L. Frenkel and J. A. Rodriguez, J. Phys. Chem. C, 2009, 113, 3650.
[49] H. Y. Chen, L. P. Wang, J. M. Bai, J. C. Hanson, J. B. Warren, J. T. Muckerman, E. Fujita and J. A. Rodriguez, J. Phys. Chem. C, 2010, 114, 1809.
[50] J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou, J. Mol. Catal. A, 2010, 325, 48.
[51] C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J. Y. Saillard and G. de With, J. Mater. Chem., 2001, 11, 1248.
[52] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B, 2003, 107, 1798.
[53] T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Res. Chem. Intermed., 2007, 33, 13.
[54] M. Yashima, Y. Lee and K. Domen, Chem. Mater., 2007, 19, 588.
[55] M. Martin, R. Dronskowski, J. Janek, K. D. Becker, D. Roehrens, J. Brendt, M. W. Lumey, L. Nagarajan, I. Valov and A. Börger, Prog. Solid State Chem., 2009, 37, 132.
[56] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
[57] G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, W. R. L. Lambrecht, B. Segall and H. Morkoc, J. Electron. Mater., 1995, 24, 225.
[58] C. F. Shih, N. C. Chen and C. Y. Tseng, C. Y. Thin Solid Films, 2008, 516, 5016.
[59] S. H. Wei and A. Zunger, Appl. Phys. Lett., 1996, 69, 2719.
[60] T. Maruyama, Y. Miyajima, K. Hata, S. H. Cho, K. Akimoto, H. Okumura, S. Yoshida and H. Kato, J. Electron. Mater., 1998, 27, 200.
[61] N. Esser, M. Rakel, C. Cobet, W. G. Schmidt, W. Braun and M. Cardona, Phys. Stat. Sol. (b), 2005, 13, 2601.
[62] V. Fiorentini, M. Methfessela and M. Scheffler, Phys. Rev. B, 1993, 47, 13353.
[63] B. Bouhafs, F. Litimein, Z. Dridi and P. Ruterana, P. Phys. Stat. Sol. (b), 2003, 236, 61.
[64] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin and C. F. McConville, Phys. Rev. B, 2008, 78, 03308.
Chapter 8
a) K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.; b) V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1, 26.; c) A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.; d) J. Li and J. Z. Zhang, Coord. Chem. Rev., 2009, 253, 3015.; e) E. Serrano, G. Rus and J. Garcia-Martinez, Renewable Sustainable Energy Rev., 2009, 13, 2373.
[2] a) J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydrogen Energy, 2008, 33, 2897.; b) C. C. Hu, J. N. Nian and H. Teng, Sol. Energy Mater. Sol. Cells, 2008, 92, 1071.; c) T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.; d) T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.; e) R. M. N. Yerga, M. C. A. Galván, F. del Valle, J. A. V. de la Mano and J. L. G. Fierro, ChemSusChem, 2009, 2, 471.
[3] a) U. Diebold, Surf. Sci. Rep., 2003, 48, 53.; b) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269.; c) C. C.Tsai and H. Teng, Appl. Surf. Sci., 2008, 254, 4912.; d) G. Zhang, X. Ding, Y. Hu, B. Huang, X. Zhang, X. Qin, J. Zhou and J. Xie, J. Phys. Chem. C, 2008, 112, 17994.; e) D. Y. C. Leung, X. Fu, C. Wang, M. Ni, M. K. H. Leung, X. Wang and X. Fu, ChemSusChem, 2010, 3, 681.
[4] a) C. C. Tsai and H. Teng, Chem. Mater., 2006, 18, 367.; b) C. C. Tsai and H. Teng, Langmuir, 2008, 24, 3434.; c) B. Cojocaru, S. Neaţu, V. I. Pârvulescu, V. Şomoghi, N. Petrea, G. Epure, M. Alvaro and H. Garcia, ChemSusChem, 2009, 2, 427.; d) C. G. Silva and J. L. Faria, ChemSusChem, 2010, 3, 609.
[5] a) K. P. Wang and H. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489.; b) P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
[6] a) W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.; b) C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.; c) J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydrogen Energy, 2007, 32, 2269.; d) C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
[7] a) A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.; b) X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.; c) S. C. Yan, Z. Q. Wang, Z. S. Li and Z. G. Zou, Solid State Ionics, 2009, 180, 1539.; d) C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
[8] a) Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydrogen Energy, 2009, 34, 147.; b) M. Yang, X. Huang, S. Yan, Z. Li, T. Yu and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
[9] a) T. Mitsuyama, A. Tsutsumi, T. Hata, K. Ikeue and M. Machida, Bull. Chem. Soc. Jpn., 2008, 81, 401.; b) T. Mitsuyama, A. Tsutsumi, S. Sato, K. Ikeue and M. Machida, J. Solid State Chem., 2008, 181, 1419.; c) K. Ikeue, T. Mitsuyama, K. Arayama, A. Tsutsumi and M. Machida, J. Ceram. Soc. Jpn., 2009, 117, 1161.; d) M. Nyman, M. A. Rodriguez, L. E. S. Rohwer, J. E. Martin, M. Waller and F. E. Osterloh, Chem. Mater., 2009, 21, 4731.; e) Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
[10] T. Puangpetch, T. Sreethawong, S. Yoshikawa and S. Chavadej, J. Mol. Catal. A: Chem., 2009, 312, 97.
[11] a) K. Ikeue, S. Shiiba and M. Machida, Chem. Mater., 2010, 22, 743.; b) H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater., 2010, 22, 951.; c) H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang and F. E. Osterloh, Chem. Mater., 2010, 22, 3362.; d) F. A. Frame and F. E. Osterloh, J. Phys. Chem. C, 2010, 114, 10628.
[12] a) S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler and J. A. Turner, J. Electrochem. Soc., 1995, 142, L238.; b) I. M. Huygens, K. Strubbe and W. P. Gomes, J. Electrochem. Soc., 2000, 147, 1797.; c) N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen and K. Sato, Chem. Lett., 2006, 35, 796.; d) N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato and Y. Inoue, Catal. Today, 2007, 129, 407.
[13] a) T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama and A. Yoshida, J. Mater. Sci., 2006, 41, 3527.; b) K. Fujii, K. Kusakabe and K. Ohkawa, Jpn. J. Appl. Phys., 2005, 44, 7433.; c) K. Kamata, K. Maeda, D. Lu, Y. Kako and K. Domen, Chem. Phys. Lett., 2009, 470, 90.; d) J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 2008, 93, 162107.
[14] a) S. Zhang, G. Zhang, S. Yu, X. Chen and X. Zhang, J. Phys. Chem. C, 2009, 113, 20029.; b) G. Zhang, M. Li, S. Yu, S. Zhang, B. Huang and J. Yu, J. Colloid. Interface Sci., 2010, 345, 467.; c) V. B. R. Boppana, D. J. Doren and R. F. Lobo, ChemSusChem, 2010, 3, 814.; d) J. Huang, K. Ding, Y. Hou, X. Wang and X. Fu, ChemSusChem, 2008, 1, 1011.; e) S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Phys. Chem. C, 2009, 113, 1560.
[15] a) K. Karch, J. M. Wagner and F. Bechstedt, Phys. Rev. B, 1998, 57, 7043.; b) T. U. Kampen, M. Eyckeler and W. Mönch, Appl. Surf. Sci., 1998, 123/124, 28.; c) T. Maruyama, Y. Miyajima, K. Hata, S. H. Cho, K. Akimoto, H. Okumura, S. Yoshida and H. Kato, J. Electro. Mater., 1998, 27, 200.
[16] a) C. Stampfl and C. G. Van de Walle, Phys. Rev. B, 1999, 59, 5521.; b) G. L. Martinez, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electro. Mater., 2000, 29, 325.; c) C. Persson, B. E. Sernelius, A. Ferreira da Silva, C. M. Araújo, R. Ahuja and B. Johansson, J. Appl. Phys., 2002, 92, 3207.
[17] a) W. C. Lan, C. D. Tsai and C. W. J. Lan, J. Taiwan Inst. Chem. Engrs., 2009, 40, 475.; b) T. Thomas, X. Guo, M. Chandrashekhar, C. B. Poitras, W. Shaff, M. Dreibelbis, J. Reiherzer, K. Li, F. J. Disalvo, M. Lipson and M. G. Spencer; J. Crys. Growth, 2009, 311, 4402.; c) P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou and Y. Bai, Appl. Phys. Lett., 2009, 95, 211907.; d) K. Laaksonen, M. G. Ganchenkova and R. M. Nieminen, J. Phys.: Condens. Matter, 2009, 21, 015803.
[18] a) R. F. Davis, Proc. IEEE, 1991, 79, 702.; b) C. G. Van de Walle and J. Neugebauer, J. Appl. Phys., 2004, 95, 3851.; c) W. Fang, C. Xiong, C. Zheng, L. Wang and F. Jiang, J. Lumin., 2007, 126, 636.; d) C. F. Shih, N. C. Chen, P. H. Chang and K. S. Liu, J. Electrochem. Soc., 2005, 152, G816.
[19] a) S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar and L. F. Eastman, J. Appl. Phys., 1998, 83, 826.; b) D. Alexandrov, K. S. A. Butcher and M. Wintrebert–Fouquet, J. Cryst. Growth, 2004, 269, 77.; c) W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu and W. J. Schaff, J. Cryst. Growth, 2004, 269, 119.
[20] a )Y. Inaba, T. Onozu, S. Takami, M. Kubo, A. Miyamoto and A. Imamura, Jpn. J. Appl. Phys., 2001, 40, 2991.; b) R. García, G. A. Hirata, M. H. Farías and J. McKittrick, Mater. Sci. Eng. B: Solid, 2002, B90, 7.; c) S. X. Li, E. E. Haller, K. M. Yu, W. Walukiewicz, J. W. Ager III, J. Wu, W. Shan, H. Lu and W. J. Schaff, Appl. Phys. Lett., 2005, 87, 161905.; d) B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars and U. K. Mishra, J. Mater. Chem., 2005, 15, 1891.
[21] a) L. W. Ji, S. J. Young, C. H. Liu, W. Water, T. H. Meen and W. Y. Jywe, J. Cryst. Growth, 2008, 310, 2476.; b) J. W. Ager III, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff and W. Walukiewicz, Phys. Status Solidi B, 2008, 245, 873.; c) C. F. Shih, N. C. Chen and C. Y. Tseng, Thin Solid Films, 2008, 516, 5016.; d) W. R. L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc and A. Rockett, Phys. Rev. B, 1994, 50, 14155; e) W. Walukiewicz, Physica B 2001, 302-303, 123.
[22] a) S. K. Lin, K. T. Wu, C. P. Huang, C. T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu and T. Y. Lin, J. Appl. Phys., 2005, 97, 046101; b) V. Lebedev, V. M. Polyakov, S. Hauguth-Frank, V. Cimalla, Ch. Y. Wang, G. Ecke, F. Schwierz, A. Schober, J. G. Lozano, F. M. Morales, D. González and O. Ambacher, J. Appl. Phys., 2008, 103, 073715.
[23] a) K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2005, 109, 20504.; b) K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.; c) X. Sun, K. Maeda, M. L. Faucheur, K. Teramura and K. Domen, Appl. Catal. A, 2007, 327, 114.; d) K. Maeda, H. Hashiguchi, H. Masuda, R. Abe and K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
[24] a) T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.; b) K. Maeda, H. Masuda and K. Domen, Catal. Today, 2009, 147, 173.; c) J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou, J. Mol. Catal. A: Chem., 2010, 325, 48.; d) T. Hisatomi, K. Maeda, D. Lu and K. Domen, ChemSusChem, 2009, 2, 336.
[25] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
[26] a) Z. Yarar, B. Ozdemir and M. Ozdemir, J. Electro. Mater., 2007, 36, 1303.; b) N. Esser, M. Rakel, C. Cobet, W. G. Schmidt, W. Braun and M. Cardona, Phys. Status Solidi B, 2005, 13, 2601.; c) V. Fiorentini, M. Methfessel and M. Scheffler, Phys. Rev. B, 1993, 47, 13353.; d) B. Bouhafs, F. Litimein, Z. Dridi and P. Ruterana, Phys. Status Solidi B, 2003, 236, 61.; e) P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin and C. F. McConville, Phys. Rev. B, 2008, 78, 033308.
校內:2020-10-15公開