簡易檢索 / 詳目顯示

研究生: 胡哲嘉
Hu, Che-Chia
論文名稱: 分解水光觸媒之半導體結構分析
Semiconductor Structure of Water-Splitting Photocatalysts
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 164
中文關鍵詞: 鈣鈦礦鉭酸鈉溶膠凝膠法固相法水熱法光觸媒水分解氧化鎳氮氧化鎵氮氧化銦鎵可見光
外文關鍵詞: Perovskite, NaTaO3, Sol–Gel, Solid-State, Hydro-thermal, Water Splitting, Photocatalysis, NiO, Gallium Oxynitride, Visible-Light, Indium Doping.
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具半導體性質的光觸媒材料,在太陽能轉化分解水產生氫氣及氧氣具有相當的潛力。本研究分別以鉭酸鈉觸媒在紫外光的應用及氮氧化鎵在可見光的應用分別進行論述說明。在第一部份,本研究利用溶膠凝膠法、水熱法及固相法合成具不同結晶結構的鉭酸鈉粉末,並利用Rietveld法對XRD繞射峰進行模擬適套,再以TEM電子繞射做驗證。XRD模擬及適套結果顯示,溶膠凝膠法合成之鉭酸鈉為單斜晶系(monoclinic),其Ta–O–Ta鍵角為179度,水熱法及固相法合成的鉭酸鈉則為正交晶系(orthorhombic),鍵角則分別為163及157度。在以波長為304奈米入射光激發時,鉭酸鈉觸媒會放出約450奈米波長的光。而放出的螢光強度,則是以固相法合成的鉭酸鈉最強,溶膠凝膠法鉭酸鈉最弱,其趨勢和Ta–O–Ta鍵角相反。另一方面,光催化分解水的反應活性,則是和Ta–O–Ta鍵角趨勢相同.本研究顯示出Ta–O–Ta鍵角會影響光激發電子電洞對的分離速度,因此,若能改變Ta–O–Ta鍵角,將可有效提升發光效率及光催化反應活性。
    另外,本研究藉由摻雜鉀原子於鉭酸鈉觸媒內部取代鈉原子,改變結晶結構並提升其光催化反應活性。本研究以溶膠凝膠法合成所需之鉭酸鈉鉀觸媒,其中鉀取代的比例範圍介於0–20 %。當鉀摻雜量在5 %時,可有效的改變鉭酸鈉的結構成為類立方晶系。類立方晶系的Ta–O–Ta鍵角為180度,能提升光生電子電洞對的遷移速度,使其傳導順暢並有效提高光反應活性。光致螢光光譜分析也證實了摻雜鉀可使鍵角接近180度,並能抑制電荷的再結合。但過量的鉀摻雜會導致雜相的生成進而使Ta–O–Ta鍵角偏離180度,並使缺陷產生而捕捉光生電子電洞對,因此其反應活性也隨之下降。本研究以適合的原子取代來改變鉭酸鈉的結晶結構並能有效提升光催化分解水反應活性。
    在這一部份裡,利用氧化鎳做為共觸媒,含浸於溶膠凝膠法及固相法合成的鉭酸鈉觸媒表面做為共觸媒,來增加光催化反應活性。以3 wt. %氧化鎳含浸於溶膠凝膠法鉭酸鈉及0.7 wt. %氧化鎳含浸於固相法鉭酸鈉可獲得最高的反應活性。若過量或過少的共觸媒,則會導致活性下降。本研究利用XRD、HRTEM及電子繞射分析其結構。在低含浸量下,鈉及鎳離子會相互擴散,並在介面形成固態溶液型式的過渡區,並且無法觀察到明顯的氧化鎳顆粒。若再以氧化再還原處理,也無法有效提升光催化反應活性。因此當氧化鎳含浸量低時,會形成p型半導體氧化鎳及n型半導體鉭酸鈉相互摻雜的情況,並縮短介面空間電荷層的長度及加速電荷傳遞,而增加光催化反應活性。
    第二部份中,本研究合成可見光光觸媒以提升太陽能頻譜的應用。首先為以氫氧化鎵做為前驅物在不同溫度下進行氮化反應合成氮氧化鎵(GaON),其能隙在2.2到2.8 eV之間,並在添加犧牲試劑於可見光照下,具有分解水製氫及製氧的能力,在625及700度下合成的觸媒,具有均勻的氮氧比,表示由氮2p及氧2p所混成的價電帶可有效提升載子的移動速,進而提升其光觸媒活性。而適當的氧氮-鎵的軌域混成,也是造成能隙縮小的原因,本研究以價帶控制的方式合成具備半導體性質的可見光光觸媒,並能有效提升太陽能的應用。
    最後,延續前述的研究,以含銦的氫氧化鎵做為前驅物,在625度下進行氮化反應,利用銦的摻雜入氮氧化鎵內,在添加犧牲試劑於可見光照下,在摻雜濃度為In:(Ga+In)為0.5 %的情況下,具有最佳的分解水製氫及製氧能力,在更高比例的摻雜下,由XRD及TEM發現氮化銦的出現,而造成光觸媒活性的下降。本研究並利用XPS進行分析,發現由In/Ga及N/O混成的價電帶,具有較好的價帶混成(dispersion of valence state),也因此具有較佳的光觸媒活性。

    Photocatalysts with semiconducting properties are attractive due to its potential on solar energy conversion. The physicochemical and optical properties of NaTaO3 and III-V group GaON were investigated in an attempt to improve the photocatalytic activities.
    Perovskite-like NaTaO3 powders have potential applications in photoluminescence and photocatalysis. In the first section, sol–gel, hydro-thermal and solid-state methods were used to synthesize NaTaO3 powders of different crystalline structures, which were identified by Rietveld refinement simulation of X-ray diffraction patterns and transmission electron microscopic diffraction. The refinement results show that the sol–gel specimen has a monoclinic phase with a Ta–O–Ta bond angle of 179° while the hydro-thermal and solid-state specimens have an orthorhombic phase with bond angles of 163° and 157°, respectively. By excitation with a 304 nm light source, these NaTaO3 specimens show photoluminescence emission at ca. 450 nm. The photoluminescence intensity of the specimens had an order solid-state > hydro-thermal > sol–gel, which is opposite to that of the Ta–O–Ta bond angle. On the other hand, the photocatalytic activity of the NaTaO3 specimens in water splitting showed the same order as that of the Ta–O–Ta bond angle. This paper directly evidenced that the Ta–O–Ta bond angle affects the separation rate of the photo-induced charges, as well as that structure tuning of tantalates is achievable and crucial for applications in photoluminescence and photocatalysis.
    In the second part of this study, the photocatalytic activity of NaTaO3 was improved by replacing some Na ions in the 12-coordinate sites with larger K ions. Na1-xKxTaO3 photocatalysts of x = 0−0.2 were synthesized with the sol–gel method. K-doping at x = 0.05 resulted in rectifying the distorted perovskite NaTaO3 to a pseudo-cubic phase as well as significantly promoting photocatalytic activity. The 180° bond angle of Ta−O−Ta in the pseudo-cubic phase may facilitate the separation of photogenerated charges for effective water splitting. Photoluminescence spectroscopic analysis confirmed that the flattened Ta−O−Ta linkage with K-doping suppresses the recombination of photogenerated charges. Further K-doping (with x > 0.05) leads to impurity formation, which bends the Ta−O−Ta linkage and creates defect states, lowering the photocatalytic activity of the K-doped NaTaO3. This study demonstrates that an appropriate ion replacement to tune the crystal structure can significantly promote electron transport in photocatalysts and thus their activity.
    In the third part, sol–gel and solid-state synthesized NaTaO3 were loaded with NiO co-catalyst to enhance water splitting activity under UV illumination. Activity increased significantly with NiO loading and reached a maximum at 3 and 0.7 wt. %, respectively, for the sol–gel and solid-state synthesized NaTaO3. Beyond this point, photocatalytic activity decreased with further loading. Analysis using X-ray diffraction, high-resolution transmission electron microscopy, and diffuse reflectance spectroscopy shows that the interdiffusion of Na+ and Ni2+ cations created a solid-solution transition zone on the outer sphere of NaTaO3. For NiO contents less than 3 wt. %, no NiO clusters appeared on the NaTaO3 surface, and the reduction/oxidation pretreatment did not enhance photocatalytic activity. The high activity resulting from a low NiO loading suggests that the interdiffusion of cations heavily doped the p-type NiO and n-type NaTaO3, reducing the depletion widths and facilitating charge transfers through the interface barrier.
    In the synthesis of wurtzite-like gallium oxynitride (GaON) photocatalysts, the nitridation of Ga(OH)3 with NH3 at temperatures between 550 and 900 ºC were employed. Ga(OH)3 is a more suitable precursor for GaON synthesis than Ga2O3, because its crystal lattice contains unoccupied 12–coordinate sites that facilitate ionic transportation during nitridation. The prepared GaON catalysts had band gap energies from 2.2 to 2.8 eV, and showed significant activities in the visible-light promoted evolution of H2 and O2 gases from methanol and AgNO3 solutions respectively. The maximum H2 and O2 evolution rates occurred for catalysts synthesized at 625 and 700 ºC, respectively. These active catalysts had an N/O atomic ratio close to unity, suggesting that extensive hybridization of N2p and O2p orbitals promotes charge mobility, and thus enhances photocatalytic activity. This study highlights the interesting possibility of synthesizing a large diversity of visible-light active, IIIoxynitride catalysts using this Ga(OH)3 route.
    Indium was introduced to activate gallium oxynitride in this section. Visible-light active Indium-doped GaON with a wurtzite-like structure were synthesized from nitridation of In(OH)3-containing Ga(OH)3 under NH3 flow at 625 ºC and used for photocatalytic water splitting. This synthesis method yielded a homogeneous In distribution in gallium oxynitride solid solutions for Ga replacement levels of up to 1 %. An appropriate amount of In substitution for Ga, approximately 0.5 %, significantly enhanced the activity of gallium oxynitride in the visible-light induced evolutions of H2 and O2 gases from methanol and AgNO3 solutions, respectively. X-ray photoelectron spectroscopy showed that In-doping increased the dispersion of hybridized orbitals in the valence band of gallium oxynitride. A higher degree of In-doping resulted in nucleation of InN-like oxynitride on the gallium oxynitride surface and degraded the photocatalytic activity. This study demonstrates that band structure engineering of gallium oxynitride powders with In-doping is a facile way to obtain visible-light sensitive photocatalysts.

    Contents 中文摘要 …………I Abstract…………III 誌謝…………VI Catalog…………VIII List of Figures…………XI List of Tables…………XVIII Catalog Chapter 1 Introduction…………1 1-1 Overview…………1 1-2 Honda-Fujishima Effect…………3 1-3 Principle of Photocatalysis…………4 1-3-1 Photocatalyst…………4 1-3-2 Photocatalytic Water Splitting…………5 1-4 Background and Motive of the Study…………7 References…………8 Chapter 2 Literature Survey…………9 2-1 Development of Water Splitting…………9 2-1-1 TiO2 Photocatalyst…………9 2-1-2 NaTaO3 Photocatalyst…………10 2-1-3 Visible-Active Photocatalysts…………21 2-1-4 Principle of Sacrificial Reagents…………26 2-1-5 Influence of Co-catalyst…………27 2-2 Photo-Reaction System…………29 2-3 Synthesis Method…………30 2-3-1 Solid-State Method…………30 2-3-2 Hydro-Thermal Method…………31 2-3-3 Sol–Gel Method…………32 References…………33 Chapter 3 Chemicals and Characterizations…………40 3-1 Materials and Instruments…………40 3-1-1 Materials…………40 3-1-2 Instruments…………41 3-2 Photocatalytic Reaction and Analyzer…………42 3-2-1 Inner-Irradiated Cell and Analyzer…………42 3-2-2 Analysis of Apparent Quantum Yield…………44 3-3 Principle of XRD and GSAS Program…………45 3-3-1 X-ray Diffraction (XRD)…………45 3-5-2 General Structure Analysis System (GSAS)…………47 References…………48 Chapter 4 Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis…………49 4-1 Introduction…………51 4-2 Experimental Section…………51 4-3 Results and Discussion…………52 4-3-1 XRD and Structure Analysis…………52 4-3-2 TEM and SAED Analysis…………54 4-3-3 Optical Analyses…………61 4-3-4 Photocatalytic Reaction…………64 4-4 Conclusions…………65 References…………66 Chapter 5 Efficient Water Splitting over Na1-xKxTaO3 Photocatalysts with Cubic Perovskite Structure…………70 5-1 Introduction…………70 5-2 Experimental Section…………71 5-3 Results and Discussion…………72 5-3-1 XRD Analysis…………72 5-3-2 GSAS and Structure Analysis…………74 5-3-3 UV-Vis Absorbance Analysis (UV-Vis)…………78 5-3-4 Photocatalytic Reaction…………81 5-3-5 Photoluminescence Analysis (PL)…………82 5-4 Conclusions…………85 References…………86 Chapter 6 Structural Features of p-type Semiconducting NiO as a Co-catalyst for Photocatalytic Water Splitting…………90 6-1 Introduction…………90 6-2 Experimental Section…………91 6-3 Results and Discussion…………92 6-3-1 SEM Analysis…………92 6-3-2 XRD and Structure Analysis…………95 6-3-3 HRTEM Analyses…………97 6-3-4 SAED Analysis…………99 6-3-5 UV-Vis Absorbance Analysis (UV-Vis)…………101 6-3-6 Photocatalytic Reaction…………103 6-3-7 Influence of Co-catalyst on Photocatalytic Reaction…………105 6-4 Conclusions…………109 References…………110 Chapter 7 Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation…………113 7-1 Introduction…………113 7-2 Experimental Section…………114 7-3 Results and Discussion…………114 7-3-1 XRD and Structure Analysis…………114 7-3-2 SEM Analysis…………119 7-3-3 UV-Vis Absorbance Analysis (UV-Vis)…………121 7-3-4 Elemental Analysis and XPS Measurement…………123 7-3-5 Photocatalytic Reaction…………127 7-4 Conclusions…………130 References…………131 Chapter 8 Influence of Indium-Doping on the Activity of Gallium Oxynitride for Water Splitting under Visible Light Irradiation…………135 8-1 Introduction…………135 8-2 Experimental Section…………137 8-3 Results and Discussion…………137 8-3-1 XRD and Structure Analysis…………137 8-3-2 Photocatalytic Reaction…………139 8-3-3 UV-Vis Absorbance Analysis (UV-Vis)…………142 8-3-4 TEM and SAED Analyses…………143 8-3-5 Elemental Analysis…………145 8-4 Conclusions…………150 References…………150 Chapter 9 Conclusions and Future Prospects…………155 9-1 Structure Characterization of NaTaO3…………155 9-2 Structure Tuning of K-doped NaTaO3…………156 9-3 Structure Feature of NiO-loaded NaTaO3…………157 9-4 Oxygen Containing Group III Nitride Photocatalyst…………158 9-5 Influence of In-Doping on GaON Photocatalyst…………158 Supporting Information…………160 Curriculum Vitae…………162 List of Figures Chapter 1 Introduction Fig. 1-1 Powdered photocatalyst system under light illumination…………2 Fig. 1-2 Schematic mechanism of Z-scheme reaction with two catalysts system…………2 Fig. 1-3 Schematic mechanism of photoelectrochemical cell with TiO2 as an anode and Pt as a cathode…………3 Fig. 1-4 Schematic illustration of basic principle of overall water splitting using photocatalysts…………6 Fig. 1-5 Three main steps of overall water splitting…………7 Chapter 2 Literature Survey Fig. 2-1 Anatase and Brookite phases of TiO2 structure.[4]…………10 Fig. 2-2 Water splitting using NiO/NaTaO3:La.[17]…………12 Fig. 2-3 Crystal structure of alkali tantalates: (a) LiTaO3, (b) NaTaO3, (c) KTaO3.[15]…………12 Fig. 2-4 Schematic illustration of band structure of Ta2O5, TaON, and Ta3N5.[102]…………24 Fig. 2-5 TEM images of Rh/(Ga1-xZnx)(N1-xOx) photodeposited (a) before, and (b) after further photodeposition of a Cr2O3 shell.[111]…………25 Fig. 2-6 Schematic diagram of (a) C3N4, and (b) Graphite oxide (GO).[122,123 ]…………25 Fig. 2-7 H2 or O2 evolution using sacrificial reagents: Half reactions of water splitting…………26 Fig. 2-8 Schematic illustration of co-catalyst loading on the surface of photocatalyst…………8 Fig. 2-9 (a) Inner-irradiated photoreaction cell; (b) top-irradiated photoreaction cell.[10]…………29 Fig. 2-10 Schematic diagram of an autoclave.[4]…………31 Chapter 3 Chemicals and Characterizations Fig. 3-1 Mercury lamp spectrum with different flowing solution: (a) quartz reactor with cooling water flowing; (b) Pyrex reactor with cooling NaNO2 solution flowing…………42 Fig. 3-2 Images and schematic illustration of inner irradiated cell…………43 Fig. 3-3 Schematic diagram of photoreaction system with a circulator…………43 Fig. 3-4 Schematic diagram of (a) amorphous structure and (b) crystalline structure…………46 Fig. 3-5 Schematic diagram of Bragg’s Law…………47 Fig. 3-6 Fitting flow chart of GSAS refinement system…………48 Chapter 4 Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis Fig. 4-1 The unit-cell and the refined crystalline structures of NaTaO3: (a) the cubic phase; (b) the monoclinic phase; (c) the orthorhombic phase. The dot-line squares shown in the crystalline structures represent the axc face of the corresponding unit cells…………51 Fig. 4-2 Synchrotron powder X-ray diffraction (XRD) patterns of the NaTaO3 specimens obtained from: (a) the sol–gel method, designated as sol–gel (SG); (b) the hydro-thermal method, designated as hydro-thermal (HT); (c) the solid-state method, designated as solid-state (SS). The wavelength of the incident X-rays was 1.3344 Å. Both the observed (dot) and Rietveld refinement simulated (line) XRD profiles are shown in this figure. The difference between the observed and simulated data is shown at the bottom of each XRD profile. The reliability factors are Rwp = 0.087 and Rp = 0.066 for sol–gel, Rwp = 0.099 and Rp = 0.072 for hydro-thermal, and Rwp = 0.144 and Rp = 0.104 for solid-state…………53 Fig. 4-3 Transmission electron microscopic (TEM) analysis on the sol–gel NaTaO3 specimen: (a) TEM images; (b) the selected area electron diffraction pattern directing along the zone axis [ ]. The high-resolution transmission electron microscopic image exhibiting the lattice fringes is shown in the inset of (a)…………57 Fig. 4-4 Transmission electron microscopic (TEM) analysis on the hydro-thermal NaTaO3 specimen: (a) TEM images; (b) the selected area electron diffraction pattern directing along the zone axis [ ]. The high-resolution transmission electron microscopic image exhibiting the lattice fringes is shown in the inset of (a)…………58 Fig. 4-5 Transmission electron microscopic (TEM) analysis on the solid-state NaTaO3 specimen: (a) TEM images; (b) the selected area electron diffraction pattern directing along the zone axis [ ]. The high-resolution transmission electron microscopic image exhibiting the lattice fringes is shown in the inset of (a)…………60 Fig. 4-6 Absorbance spectra of the sol–gel, hydro-thermal, and solid-state NaTaO3 specimens converted from the diffuse reflectance…………63 Fig. 4-7 Photoluminescence emission spectra at –196 °C of the sol–gel, hydro-thermal, and solid-state NaTaO3 specimens under 304 nm excitation…………63 Fig. 4-8 Photocatalytic H2 (empty) and O2 (full) evolution from 900 mL pure water suspended with 1000 mg of the sol–gel, hydro-thermal, and solid-state NaTaO3 photocatalysts, which have surface areas of 23, 12, and 0.6 m2 g-1, respectively…………65 Chapter 5 Efficient Water Splitting over Na1-xKxTaO3 Photocatalysts with Cubic Perovskite Structure Fig. 5-1 Powder XRD patterns of the Na1-xKxTaO3 catalysts with varying K contents: (a) the full range (20–70°) patterns; (b) the magnification of the diffraction peaks around 22.8°…………73 Fig. 5-2 (a) The unit cell of monoclinic NaTaO3; (b) the refined structure of monoclinic phase NaTaO3 with a Ta–O–Ta bond angle less than 180°; (c) the refined structure of K-doped monoclinic NaTaO3 with a Ta–O–Ta bond angle of approximately 180°…………76 Fig. 5-3 Observed (cross) and Rietveld-refinement simulated (line) XRD profiles for the Na1-xKxTaO3 catalysts: (a) x = 0, with Rwp = 0.087 and Rp = 0.074; (b) x = 0.05, with Rwp = 0.106 and Rp = 0.091; (c) x = 0.15, with Rwp = 0.066 and Rp = 0.057. The difference between the observed and simulated data is displaced near the bottom of the graphs…………77 Fig. 5-4 (a) Unit cell edge lengths of the Na1-xKxTaO3 catalysts with varying K contents; (b) the deviation index values, (Δa + Δb + Δc)/L, of the Na1-xKxTaO3 catalysts with varying K contents…………78 Fig. 5-5 (a) Diffuse reflectance spectra of the Na1-xKxTaO3 catalysts with different K contents; (b) plots of (αE)1/2 vs. photon energy for the Na1-xKxTaO3 catalysts with different K contents. The inset of panel (b) shows the dependence of the band gap energy on the K content…………80 Fig. 5-6 Time course of photocatalytic H2 evolution from 1100 mL pure water suspended with 100 mg of the Na1-xKxTaO3 catalysts under mercury lamp irradiation. The inset shows the dependence of the H2 and O2 evolution rates on the K content…………82 Fig. 5-7 Photoluminescence emission spectra of the Na1-xKxTaO3 catalysts measured at −196°C with 270 nm wavelength excitation…………84 Fig. 5-8 Photoluminescence emission spectra of the Na1-xKxTaO3 catalysts measured at −196 °C, excluding the second-order line (540 nm) from the excitation line at 270 nm. The solid-line curves are the overall PL spectra, which were decomposed into two Gaussian peaks, blue luminescence (BL) and green luminescence (GL) at ca. 440 and 500 nm, respectively…………85 Chapter 6 Structural Features of p-type Semiconducting NiO as a Co-catalyst for Photocatalytic Water Splitting Fig. 6-1 SEM images of naked NaTaO3 powders: (a) the solid-state synthesized NaTaO3, i.e., SS; (b) the sol–gel synthesized NaTaO3, i.e., SG…………94 Fig. 6-2 X-ray diffraction patterns of sol–gel and solid-state synthesized NaTaO3 catalysts with different amounts of NiO loading: (a) NiO/SG catalysts; (b) NiO/SS catalysts. The NiO contents are shown in wt. %. The insets show the magnification of the diffraction peak around 22.8°…………96 Fig. 6-3 High-resolution TEM images of SG NaTaO3 catalysts with different amounts of NiO loading: (a) naked SG; (b) 0.7 wt. % NiO/SG; (c) 3 wt. % NiO/SG; (d) 15 wt. % NiO/SG. The insets of (a), (b), and (d) show the selected area electron diffraction patterns of NaTaO3. The inset of (c) shows the magnification of the particle periphery. The arrow in (c) indicates the spots where electron diffraction analysis was conducted; see Figure 6-4 for the results…………98 Fig. 6-4 Selected area electron diffraction patterns of the 3 wt. % NiO/SG catalyst obtained sequentially from the outer sphere to the interior, i.e., (a–c) in sequence, along the arrow indicated in Figure 6-3…………100 Fig. 6-5 HR TEM image (a) and selected area electron diffraction patterns (b–f) of the 15 wt. % NiO/SS catalyst. (b–f) Sequentially show the electron diffraction patterns obtained from the NiO cluster to the catalyst interior along the arrow indicated in (a)…………101 Fig. 6-6 Diffuse reflectance spectra of the NaTaO3 catalysts with different amounts of NiO loading: (a) the NiO/SG catalysts; (b) the NiO/SS catalysts. The NiO spectrum is provided for comparison…………102 Fig. 6-7 Timeline of photocatalytic H2 evolution from 1100 mL pure water suspended with 1000 mg of the NiO/SG and NiO/SS catalysts (a and b); the dependence of the H2 and O2 evolution rates on NiO content for the NiO/SG and NiO/SS catalysts (c)…………104 Fig. 6-8 Schematic energy-level diagrams of NiO and NaTaO3: (a) before joining; (b) after joining; (c) under illumination after joining. Ec, Ev, and EF represent the energy positions of the conduction band edge, valence band edge, and Fermi level, respectively…………107 Fig. 6-9 Schematic energy-level diagrams of NiOx/NaTaO3 interface. An Ohmic type contact formed at the p-NiO/Ni interface, while the Ni/n-NaTaO3 contact interface formed a Schottky-type barrier with electrons accumulating on the metal side. Ec, Ev, and EF represent the energy positions of the conduction band edge, valence band edge, and Fermi level, respectively…………108 Fig. 6-10 The dependence of H2 and O2 evolution rates on NiO content for the reduction/oxidation pretreated NiO/SG catalysts (i.e., the NiOx/SG catalysts)…………108 Fig. 6-11 Schematic energy-level diagrams of the NiO and NaTaO3 contact with interdiffusion of Ni2+ and Na+ to form p-doped NiO (i.e., NaxNi2+1-2xNi3+xO) and n-doped NaTaO3 (i.e., NixNa1-xTaO3) at the interface. Steeper band bending and reduced depletion widths appeared at the heterojunction interface. Ec, Ev, and EF represent the energy positions of the conduction band edge, valence band edge, and Fermi level, respectively…………109 Chapter 7 Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation Fig. 7-1 (a) Powder XRD pattern and (b) SEM image of the Ga(OH)3 powder obtained from hydrothermal synthesis. The standard diffraction pattern of Ga(OH)3 (JCPDS 18-0532) is inset at the bottom of panel (a)…………117 Fig. 7-2 Unit-cell and refined crystal structures of: (a) Ga(OH)3; (b) Ga2O3; (c) wurtzite GaN. Dashed-line indicates the primitive unit cell…………118 Fig. 7-3 Powder XRD patterns of the GaON catalysts obtained at various nitridation temperatures. The standard diffraction pattern of wurtzite GaN (JCPDS 76-0703) is inset at the bottom…………119 Fig. 7-4 SEM images of the GaON catalysts obtained from various nitridation temperatures: (a) GaON5 (550 ºC); (b) GaON6 (625 ºC); (c) GaON7 (700 ºC); (d) GaON9 (900 ºC)…………120 Fig. 7-5 (a) Diffuse reflectance spectra of the GaON catalysts obtained from various nitridation temperatures; (b) plots of (αE)2 vs. photon energy (E) for direct gap transition of the GaON catalysts. α represents absorbance…………122 Fig. 7-6 Variation of (a) chemical composition and (b) band gap energy of the GaON catalysts with nitridation temperature. The band gap energies of Ga2O3 and wurtzite GaN are also provided in panel (b)…………125 Fig. 7-7 Schematic energy levels of (a) GaN and GaON, displaying the regions for the valence state.[62]…………125 Fig. 7-8 XPS spectra of the valence state for GaON9, GaON7, and GaON5 (indicated by the solid lines). These spectra were decomposed into three peaks (indicated by the dashed lines) that were fitted to a symmetric Gaussian function…………126 Fig. 7-9 XPS spectra of the Ga3d state for the GaON catalysts. The peak binding energy positions are indicated in the figure…………127 Fig. 7-10 Time courses of (a) photocatalytic H2 evolution from 1000 mL of 20 vol. % methanol solution and (b) photocatalytic O2 evolution from 1000 mL of 0.02 M AgNO3 solution, with 500 mg of suspended Pt/GaON catalyst under visible light (λ > 400 nm) irradiation. 0.5 wt. % of Pt was loaded as co-catalyst by photodeposition method…………130 Chapter 8 Influence of Indium-Doping on the Activity of Gallium Oxynitride for Water Splitting under Visible Light Irradiation Fig. 8-1 Powder X-ray diffraction (XRD) patterns of the In-doped GaON catalysts obtained at nitridation temperature of 625 °C with varying In atomic percentages (cIn) in the catalyst precursors. The standard diffraction patterns of wurtzite GaN (JCPDS 76-0703) and InN (JCPDS 50-1239) data are shown at the top and bottom, respectively…………139 Fig. 8-2 Time courses of a) photocatalytic H2 evolution from 1000 mL of 20 vol. % methanol solution and b) photocatalytic O2 evolution from 1000 mL of 0.02 M AgNO3 solution, with 500 mg of suspended In-doped GaON catalysts under visible light (λ > 400 nm) irradiation. The catalysts were synthesized with varying In percentages (cIn) in their precursors. 0.5 wt. % of Pt was loaded as co-catalyst by photodeposition method…………141 Fig. 8-3 Variation of gas evolution rates and band gap energies of the In-doped GaON catalysts with the In atomic percentage (cIn) in the catalyst precursors…………141 Fig. 8-4 (a) Diffuse reflectance spectra of the In-doped GaON catalysts with varying cIn values; (b) plots of (αE)2 vs. photon energy (E) of the In-doped GaON catalysts with varying cIn values. α represents the absorbance…………143 Fig. 8-5 High-resolution TEM images of the In-doped GaON catalysts with varying cIn values: a) cIn = 0 %; b) cIn = 0.5 %; c) cIn = 3 %. The upper and lower insets of each panel show the corresponding dark field image and selected area electron nano-beam diffraction pattern…………145 Fig. 8-6 Dependence of the In:(Ga + In) atomic ratios (XIn) on the In-doped GaON catalysts with the cIn value in the precursor. The XIn values were obtained with EDS and XPS analyses…………148 Fig. 8-7 Schematic energy-level diagrams of a) GaON and b) In-doped GaON catalysts in the valence state region…………148 Fig. 8-8 XPS spectra of the valence state for the In-doped GaON catalysts with different cIn values (indicated by the solid lines). These spectra were decomposed into three peaks (indicated by the dashed lines) that were fitted to a symmetric Gaussian function…………149 List of Tables Chapter 2 Literature Survey Table 2-1 Literature lists of NaTaO3 (Photocatalytic reaction)…………13 Table 2-2 Literature lists of NaTaO3 (Structural, optical, electronic properties)…………17 Chapter 4 Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis Table 4-1 Refined Structure Parameters of the Sol–Gel, Hydro-Thermal, and Solid-State NaTaO3 Specimens…………59 Chapter 5 Efficient Water Splitting over Na1-xKxTaO3 Photocatalysts with Cubic Perovskite Structure Table 5-1 Rietveld Refinement Results for the Na1-xKxTaO3 Catalysts Synthesized with Varying x Values Based on the Monoclinic Crystal System with the Space Group P2/m…………75 Chapter 6 Structural Features of p-type Semiconducting NiO as a Co-catalyst for Photocatalytic Water Splitting Table 6-1 The BET Surface Areas of Sol–Gel and Solid-State Synthesized NaTaO3 (SG and SS, respectively) with Different Amounts of NiO Loading…………93 Chapter 7 Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation Table 7-1 Surface Area, Photocatalytic Activity, and Stoichiometric Ratio of GaON Catalysts Obtained from Nitridation of Ga(OH)3 at Various Temperatures…………121

    Chapter 1
    [1] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
    [2] A. Fujishima and K. Honda, Nature, 1972, 238, 37.
    [3] C. C. Lo, C. W. Huang, C. H. Liao and Jeffrey C. S. Wu, Int. J. Hydro. Energy, 2010, 35, 1523.
    [4] G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc., 1977, 99, 7189.
    [5] H. V. Damme and W. K. Hall, J. Am. Chem. Soc., 1979, 101, 4373.
    [6] T. Kawai and T, Sakata, Chem. Phys. Lett., 1980, 72, 87.
    [7] A. J. Nozik, Appl. Phys. Lett., 1977, 30, 567.
    [8] M. Grätzel, Nature, 2001, 414, 338.
    [9] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
    [10] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
    Chapter 2
    [1] G. N. Schrauzer and T. D. Guth, J. Am. Chem. Soc., 1977, 99, 7189.
    [2] H. V. Damme and W. K. Hall, J. Am. Chem. Soc., 1979, 101, 4373.
    [3] K. Rajeshwar, N. R. de Tacconi and C. R. Chenthamarakshan; Chem. Mater., 2001, 13, 2765.
    [4] P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
    [5] A. Fujishima and K. Honda, Nature, 1972, 238, 37.
    [6] A. J. Nozik, Appl. Phys. Lett., 1977, 30, 567.
    [7] S. Sato and J. M. White, Chem. Phys. Lett., 1980, 72, 83.
    [8] M. Grätzel, Nature, 2001, 414, 338.
    [9] K. Sayama and H. Arakawa, J. Chem. Soc., Chem. Commun., 1992, 150.
    [10] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
    [11] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
    [12] H. Kato and A. Kudo, Chem. Phys. Lett., 1998, 295, 487.
    [13] H. Kato and A. Kudo, Catal. Lett., 1999, 58, 153.
    [14] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
    [15] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
    [16] A. Yamakata, T. Ishibashi, H. Kato and A. Kudo, J. Phys. Chem. B, 2003, 107, 14383.
    [17] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
    [18] A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chem. Lett., 2004, 33, 1260.
    [19] Y. He, Y. Zhu and N. Wu, J. Sol. Stat. Chem., 2004, 177, 3868.
    [20] Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo and H. Kato, J. Sol. Stat. Chem., 2004, 177, 4205.
    [21] A. Iwase, H. Kato and A. Kudo, Chem. Lett., 2005, 34, 946.
    [22] A. Iwase, H. Kato and A. Kudo, Catal. Lett., 2006, 108, 7.
    [23] D. G. Porob and P. A. Maggard, J. Sol. Stat. Chem., 2006, 179, 1727.
    [24] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
    [25] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
    [26] H. Yoshida, S. Kato, K. Hirao, J. Nishimoto and T. Hattori, Chem. Lett., 2007, 36, 430.
    [27] Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura and K. Domen, Bull. Chem. Soc. Jpn., 2007, 80, 423.
    [28] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
    [29] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
    [30] H. Fu, S. Zhang, L. Zhang and Y. Zhu, Mater. Res. Bull., 2008, 43, 864.
    [31] H. W. Kang, E. J. Kim and S. B. Park, Int. J. Photoenergy, 2008, 519643.
    [32] A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.
    [33] Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
    [34] X. Wang, G. Liu, Z. G. Chen, F. Li, G. Q. Lu and H. M. Cheng, Chem. Lett., 2009, 38, 214.
    [35] A. Iwase, K. Saito and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 514.
    [36] M. Maruyama, A. Iwase, H. Kato, A. Kudo and H. Ohishi, J. Phys. Chem. C, 2009, 113, 13918.
    [37] X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.
    [38] L. M. Torres-Martínez, A. Cruz-López, I. Juárez-Ramírez and M. E. M. La Rosa, J. Hazard. Mater., 2009, 165, 774.
    [39] S. C. Yan, Z. Q. Wang, Z. S. Li and Z. G. Zou, Sol. Stat. Ion., 2009, 180, 1539.
    [40] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
    [41] X. Wang, H. Bai, Y. Meng, Y. Zhao, C. Tang and Y. Gao, J. Nanosci. Nanotech., 2010, 10, 1788.
    [42] H. W. Kang and S. B. Park, Adv. Powder Tech., 2010, 21, 106.
    [43] X. Yi and J. Li, J. Sol-Gel Sci. Tech., 2010, 53, 480.
    [44] K. Teramura, S. Okuoka, H. Tsuneoka, T. Shishido and T. Tanaka, Appl. Catal. B, 2010, 96, 565.
    [45] K. Shimura, S. Kato, T. Yoshida, H. Itoh, T. Hattori and H. Yoshida, J. Phys. Chem. C, 2010, 114, 3493.
    [46] M. Yang, X. Huang, S. Yan, Z. Li, T. Yu and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
    [47] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
    [48] I. G. Ismailzade, Sov. Phys. Crystallogr., 1963, 7, 584.
    [49] C. H. Perry and N. E. Tornberg, Sol. Stat. Commun., 1968, 6, R16.
    [50] C. H. Perry and N. E. Tornberg, Phys. Rev., 1969, 183, 595.
    [51] V. M. Lebedev, Y. N. Venevtse and G. S. Zhdanov, Sov. Phys. Crystallogr., 1970, 14, 931.
    [52] G. Kaindl and D. Salomon, Bull. Am. Phys. Soc., 1972, 17, 681.
    [53] M. Ahtee and L. Unonius, Acta Crystallogr. Sec. A, 1977, 33, 150.
    [54] G. Wortmann, G. Trollmann, A. Heidemann and G. M. Kalvius, Hyper. Inter., 1978, 4, 610.
    [55] K. Nassau, C. A. Wang and M. Grasso and J. Am. Ceram. Soc., 1979, 62, 503.
    [56] A. Sadel, R. Vondermuhll, J. Ravez and P. Hagenmuller, Mater. Res. Bull., 1980, 15, 1789.
    [57] M. Ahtee and C. N. W. Darlington, Acta Crystallogr. Sec B, 1980, 36, 1007.
    [58] Y. Yacoby and A. Agranat, J. De Physi., 1986, 47, 107.
    [59] N. F. Fedorov, O. V. Melnikova, A. P. Pivovarova, L. E. Vladimirskaya, N. V. Starkova and I. E. Polevaya, Inorg. Mater., 1989, 25, 416.
    [60] A. Aleksandrowicz and K. Wojcki, Ferroelec., 1989, 99, 105.
    [61] B. Rechav, N. Sicron, Y. Yacoby, B. Ravel, M. Newville and E. A. Stern, Physica C, 1993, 209, 55.
    [62] B. Rechav, Y. Yacoby, E. A. Stern, J. J. Rehr and M. Newville, Phys. Rev. Lett., 1994, 72, 1352.
    [63] M. Wiegel, M. H. J. Emond, E. R. Stobbe and G. Blasse, J. Phys. Chem. Sol., 1994, 55, 773.
    [64] M. E. Villafuerte-Castrejon, G. Munoz, H. D. Sinclair, A. Munoz and J. Rubio, Ferroelec. Lett. Sec., 1996, 21, 127.
    [65] B. J. Kennedy, A. K. Prodjosantoso and C. J. Howard, J. Phys.: Condens. Matter, 1999, 11, 6319.
    [66] R. P. Singh, M. J. Miller and J. N. Dann, Powder Diffrac., 1999, 14, 231.
    [67] F. Schlottig, J. Schreckenbach and G. Marx, Fresen. J. Anal. Chem., 1999, 363, 209.
    [68] C. N. W. Darlington and K. S. Knight, Acta Crystallogr. Sec. B, 1999, 55, 24.
    [69] S. Y. Istomin, G. Svensson, H. Hannerz and J. Köhler, J. Sol. Stat. Chem., 2000, 154, 427.
    [70] M. D. Aguas and I. P. Parkin, J. Mater. Sci. Lett., 2001, 20, 57.
    [71] Y. X. Wang, W. L. Zhong, C. L. Wang and P. L. Zhang, Sol. Stat. Commun., 2001, 120, 137.
    [72] S. Y. Istomin, G. Svensson and J. Köhler, Sol. Stat. Sci., 2002, 4, 191.
    [73] J. A. Nelson and M. J. Wagner, J. Am. Chem. Soc., 2003, 125, 332.
    [74] R. H. Mitchell and R. P. Liferovich, J. Sol. Stat. Chem., 2004, 177, 4420.
    [75] X. M. Chen, Y. T. Lu, D. Z. Jin and X. Q. Liu, J. Electroceram., 2005, 15, 21.
    [76] Y. Lee, T. Watanabe, T. Takata, J. N. Kondo, M. Hara, M. Yoshimura and K. Domen, Chem. Mater., 2005, 17, 2422.
    [77] A. Yamakata, T. Ishibashi, K. Takeshita and H. Onishi, Top. Catal., 2005, 35, 211.
    [78] J. Xu, D. Xue and C. Yan, Mater. Lett., 2005, 59, 2920.
    [79] S. E. Ashbrook, L. Le Pollès, R. Gautier, C. J. Pickard and R. I. Walton, Phys. Chem. Chem. Phys., 2006, 8, 3423.
    [80] J. Chen, L. Hu, J. Zhao, C. Tang and Y. Li, Rare Metals, 2006, 25, 69.
    [81] V. Samuel, A. B. Gaikwad and V. Ravi, Bull. Mater. Sci., 2006, 29, 123.
    [82] C. Herzog, S. Aravazhi, A. Guarino, A. Schneider, G. Poberaj and P. Günter, J. Opt. Soc. Am. B, 2007, 24, 829.
    [83] N. G. Teixeira, A. Dias and R. L. Moreira, J. Europ. Ceram. Soc., 2007, 27, 3683.
    [84] C. Herzog, S. Reidt, G. Poberaj and P. Günter, Optics Express, 2007, 15, 7642.
    [85] G. Jiao, H. Fan, L, Liu and W. Wang, Mater. Lett., 2007, 61, 4185.
    [86] M. Spreitzer, J. König, B. Jančar and D. Suvorov, IEEE Trans., 2007, 54, 2617.
    [87] J. König, B. Jančar and D. Suvorov, J. Am. Ceram. Soc., 2007, 90, 3621.
    [88] Z. H. Li, G. Chen and J. W. Liu, Sol. Stat. Commun., 2007, 143, 295.
    [89] H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu and Y. Jiang, Appl. Phys. B, 2008, 91, 75.
    [90] B. A. Kjarsgaard and R. H. Mitchell, Canad. Miner., 2008, 46, 981.
    [91] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
    [92] X. Zhou, Y. Chen, H. Mei, Z. Hu and Y. Fan, Appl. Surf. Sci., 2008, 255, 2803.
    [93] Y. C. Lee, H. Teng, C. C. Hu and S. Y. Hu, Electrochem. Sol. Stat. Lett., 2008, 11, P1.
    [94] V. Shanker, S. L. Samal, G. K. Pradhan, C. Narayana and A. K. Ganguli, Sol. Stat. Sci., 2009, 11, 562.
    [95] W. Wunderlich, J. Nucl. Mater., 2009, 389, 57.
    [96] W. Wunderlich and S. Soga, J. Ceram. Proce. Res., 2010, 11, 233.
    [97] Y. Cui, L. Liu, Y. Chen, D. Yu, X. Zhou, N. Xu and W. Ding, Sol. Stat. Sci., 2010, 12, 232.
    [98] E. E. Eyi and S. Cabuk, Philosophi. Magaz., 2010, 90, 2965.
    [99] M. Jansen and H. P. Letschert, Nature, 2000, 404, 980.
    [100] G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Chem. Commun., 2002, 1698.
    [101] G. Hitoki, T. Takata, J. N. Kondo, M. Hara and K. Domen, Chem. Lett., 2002, 31, 736.
    [102] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B, 2003, 107, 1798.
    [103] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2003, 107, 791.
    [104] D. Yamasita, T. Takata, M. Hara, J. N. Kondo and K. Domen, Sol. Stat. Ion., 2004, 172, 591.
    [105] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nature Mater., 2006, 5, 782.
    [106] J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydro. Energy, 2008, 33, 2897.
    [107] C. C. Hu, J. N. Nian and H. Teng, Sol. Energ. Mater. Sol. Cells, 2008, 92, 1071.
    [108] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.
    [109] K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. B, 2005, 109, 21915.
    [110] K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. B, 2006, 110, 13107.
    [111] K. Maeda, K. Teramuar, D. Lu, N. Saito, Y. Inoue and K. Domen, Angew. Chem. Int. Ed, 2006, 45, 7806.
    [112] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, J. Phys. Chem. C, 2007, 111, 7554.
    [113] W. Wei, Y. Dai, K. Yang, M. Guo and B. Huang, J. Phys. Chem. C, 2008, 112, 15915.
    [114] L. L. Jensen, J. T. Muckerman and M. D. Newton, J. Phys. Chem. C, 2008, 112, 3439.
    [115] N. Sakamoto, H. Ohtsuka, T. Ikeda, K. Maeda, D. Lu, M. Kanehara, K. Teramura, T. Teranishi and K. Domen, Nanoscale, 2009, 1, 106.
    [116] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.
    [117] H. Chen, L. Wang, J. Bai, J. C. Hanson, J. B. Warren, J. T. Muckerman, E. Fujita and J. A. Rodriguez, J. Phys. Chem. C, 2010, 114, 1809.
    [118] M. Goga, R. Seshadri, V. Ksenofontov, P. Gütlich and W. Tremel, Chem. Commun., 1999, 979.
    [119] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2002, 124, 13547.
    [120] I. Tsuji, H. Kato and A. Kudo, Chem. Mater., 2006, 18, 1969.
    [121] S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac and K. Yoshino, J. Chem. Soc., Chem. Commun., 1985, 8, 474.
    [122] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature Mater., 2009, 8, 76.
    [123] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.
    [124] A. R. West; “Basic Solid State Chemistry”, 2nd ed., Wiley, USA, 1999, p. 319.
    [125] H. Zhang, X. Jia, Y. Yan, Z. Liu, D. Yang and Z. Li, Mater. Res. Bull., 2004, 39, 839.
    [126] S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean and J. C. Champarnaud-Mesjard, J. Sol-Gel Tech., 2007, 41, 79.
    Chapter 3
    [1] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
    [2] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
    [3] B. D. Cullity and S. R. Stock; “Elements of X-Ray Diffraction” 3rd ed. Prentice Hall.
    [4] H. M. Rietveld, Acta Crystallogr., 1967, 22, 151.
    [5] H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.
    [6] P. M. Woodward, A. W. Sleight and T. Vogt; J. Phys. Chem. Sol., 1995, 56, 1305.
    [7] B. H. Toby, J. Appl. Crystallogr., 2001, 34, 210.
    Chapter 4
    [1] J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 2003, 107, 7965.
    [2] J. Sato, H. Kobayashi, and Y. Inoue, J. Phys. Chem. B, 2003, 107, 7970.
    [3] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, and K. Domen, J. Phys. Chem. B, 2005, 109 20504.
    [4] A. Kudo, Int. J. Hydrogen Energy, 2006, 31, 197.
    [5] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
    [6] H. Kato and A. Kudo, Chem. Phys. Lett., 1998, 295, 487.
    [7] T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, J. Phys. Chem. B, 1999, 103, 1.
    [8] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
    [9] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
    [10] H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
    [11] H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
    [12] H. Kato and A. Kudo, Catal. Today, 2003, 78, 561.
    [13] A. Iwase, H. Kato, and A. Kudo, Chem. Lett., 2005, 34, 946.
    [14] D. G. Porob and P. A. Maggard, J. Solid State Chem., 2006, 179, 1727.
    [15] H. Kato and A. Kudo, Chem. Lett., 1999, 28, 1207.
    [16] A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
    [17] M. Yoshino, M. Kakihana, W. S. Cho, H. Kato, and A. Kudo, Chem.Mater., 2002, 14, 3369.
    [18] J. Ye, Z. Zou, and A. Matsushita, Int. J. Hydrogen Energy, 2003, 28, 651.
    [19] T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, and Y. Takita, J. Photochem. Photobiol. A, 2004, 167, 149.
    [20] K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, and A. Kudo, J. Catal., 2005, 232, 102.
    [21] Z. Zou, J. Ye, and H. Arakawa, Chem. Phys. Lett., 2000, 332, 271.
    [22] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature, 2001, 414, 625.
    [23] Z. Zou and H. Arakawa, J. Photochem. Photobiol. A,,2003, 158, 145.
    [24] K. Sayama, H. Arakawa, and K. Domen, Catal. Today, 1996, 28, 175.
    [25] A. Kudo and H. Kato, Chem. Lett., 1997, 26, 867.
    [26] Y. Yakahara, J. N. Kondo, D. Lu, and K. Domen, Solid State Ionics, 2002, 151, 305.
    [27] M. Hara, T. Takata, J. N. Kondo, and K. Domen, Catal. Today, 2004, 90, 313.
    [28] M. Machida, T. Mitsuyama, K. Ikeue, S. Matsushima, and M. Arai, J. Phys. Chem. B, 2005, 109, 7801.
    [29] K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, and K. Toda, Chem. Mater., 2005, 17, 5161.
    [30] M. Yashima, Y. Lee, and K. Domen, Chem. Mater., 2007, 19, 588.
    [31] W. H. Lin, C. Cheng, C. C. Hu, and H. S. Teng, Appl. Phys. Lett., 2006, 89, 211904.
    [32] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
    [33] B. J. Kennedy, A. K. Prodjosantoso, and C. J. Howard, J. Phys. Condens. Matter, 1999, 11, 6319.
    [34] Y. C. Lee, H. Teng, C. C. Hu, and S. Y. Hu, Electrochem. Solid State Lett., 2008, 11, P1–4.
    [35] A. M. Glazer, Acta Cryst. B, 1972, 28, 3384.
    [36] P. M. Woodward, Acta Cryst. B, 1997, 53, 32.
    [37] I. G. Ismailzade, Kristallografiya, 1962, 7, 718.
    [38] I. G. Ismailzade, Sov. Phys. Crystallogr., 1963, 7, 584.
    [39] M. Ahtee and L. Unonius, Acta Cryst. A, 1977, 33, 150.
    [40] M. Ahtee and C. N. W. Darlington, Acta Cryst. B, 1980, 36, 1007.
    [41] C. N. W. Darlington and K. S. Knight, Acta Cryst. B, 1999, 55, 24.
    [42] Y. X. Wang, W. L. Zhong, C. L. Wang, and P. L. Zhang, Solid State Commun., 2001, 120, 137.
    [43] J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, Int. J. Hydrogen Energy, 2007, 32, 2269.
    [44] N. G. Teixeira, A. Dias, and R. L. Moreira, J. Eur. Ceram. Soc., 2007, 27, 3683.
    [45] C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2004, 87, 2080.
    [46] B. H. Toby, J. Appl. Cryst., 2001, 34, 210.
    [47] Program Package Ca.R.Ine version 3.1 Crystallography, Distributed by Ca.R.Ine Crystallography, 17. rue du Moulin do Roy, 60300 Senlis, France.
    [48] M. Wiegel, M. Hamoumi, and G. Blasse, Mater. Chem. Phys., 1994, 36, 289.
    [49] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
    [50] N. Hamada, H. Sawada, I. Solovyev, and K. Terakura, Physica B, 1997, 237–238, 11.
    [51] H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward, J. Solid State Chem., 2003, 175, 94.
    [52] H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem., 2004, 43, 1667.
    [53] Z. H. Li, G. Chen, and J. W. Liu, Solid State Commun., 2007, 143, 295.
    [54] R. Leonelli and J. L. Brebner, Phys. Rev. B, 1986, 33, 8649.
    [55] V. S. Vikhnin and S. Kapphan, Phys. Solid State, 1998, 40, 834.
    [56] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik, and J. Rosa, J. Appl. Phys., 2003, 93, 6056.
    [57] V. S. Vikhnin, Phys. Solid State, 2005, 47, 1548.
    [58] E. Longo, E. Orhan, F. M. Pontes, C. D. Pinheiro, E. R. Leite, J. A. Varela,P. S. Pizani, T. M. Boschi, F. Lanciotti Jr., A. Beltra´ n, and J. Andre´ s, Phys. Rev. B, 2004, 69, 125115.
    [59] L. Grigorjeva, D. K.Millers, V. Pankratov, R. T.Williams, R. I. Eglitis, E. A. Kotomin, and G. Borstel, Solid State Commun., 2004, 129, 691.
    [60] E. Orhan, J. A. Varela, A. Zenatti, M. F. C. Gurgel, F.M. Pontes, E. R. Leite, E. Longo, P. S. Pizani, A. Beltra´ n, and J. Andre´ s, Phys. Rev. B, 2005, 71, 085113.
    [61] W. F. Zhang, J. Tang, and J. Ye, Chem. Phys. Lett., 2006, 418, 174.
    [62] W. F. Zhang, J. Tang, and J. Ye, J. Mater. Res., 2007, 22, 1859.
    Chapter 5
    [1] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
    [2] F. E. Osterloh, Chem. Mater., 2008, 20, 35.
    [3] O. K. Varghese and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 2008, 92, 374.
    [4] B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, J. Mater. Chem., 2008, 18, 2298.
    [5] S. Ekambaram, J. Alloys and Comp., 2008, 448, 238.
    [6] R. M. N. Yerga, M. C. A. Galvan, F. del Valle, J. de la Mano and J. L. G. Fierro, ChemSusChem., 2009, 2, 471.
    [7] T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.
    [8] T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.
    [9] A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
    [10] T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi and Y. Takita, J. Photochem. Photobio. A: Chem., 2004, 167, 149.
    [11] Y. X. Li, G. Chen, H. J. Zhang, Z. H. Li and J. X. Sun, J. Sol. Stat. Chem., 2008, 181, 2653.
    [12] A. Kumar, M. Kolaski, H. M. Lee and K. S. Kim, J. Phys. Chem. A, 2008, 112, 5502.
    [13] K. Inaba, S. Suzuki, Y. Noguchi, M. Miyayama, K. Toda and M. Sato, Eur. J. Inorg. Chem., 2008, 35, 5471.
    [14] M. Nyman, M. A. Rodriguez, L. E. S. Rohwer, J. E. Martin, M. Waller and F. E. Osterloh, Chem. Mater., 2009, 21, 4731.
    [15] H. Huang, D. Li, Q. Lin, Q. Shao, W. Chen, Y. Hu, Y. Chen and X. Fu, J. Phys. Chem. C, 2009, 113, 14264.
    [16] K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti and K. Domen, J. Phys. Chem. C, 2009, 113, 4940.
    [17] Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536.
    [18] C. C. Wua, W. K. Cheng, W. S. Chang and T. C. Lee, J. Taiwan Int. Chem. Eng., 2009, 40, 180.
    [19] K. Inaba, S. Suzuki, Y. Noguchi and M. Miyayama, J. Alloys and Comp., 2009, 486, 78.
    [20] T. Ishihara, H. Nishiguchi, K. Fukamachi and Y. Takita, J. Phys, Chem. B, 1999, 103, 1.
    [21] T. Takata and K. Domen, J. Phys. Chem. C, 2009, 113, 19386.
    [22] Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
    [23] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
    [24] H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
    [25] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
    [26] A. Yamakata, T. Ishibashi, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. B, 2003, 107, 14383.
    [27] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
    [28] C. C. Hu and H. Teng, Appl. Cata., A, 2007, 331, 44.
    [29] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 13, 2269.
    [30] A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.
    [31] A. Iwase, K. Saito and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 514.
    [32] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
    [33] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
    [34] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
    [35] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
    [36] Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
    [37] X. Li and J. L. Zang, J. Phys. Chem. C, 2009, 113, 19411.
    [38] Z. G. Yi and J. H. Ye, J. Appl. Phys., 2009, 106, 074910.
    [39] S. E. Ashbrook, L. L. Pollés, R. Gautier, C. J. Pickard and R. I. Walton, Phys. Chem. Chem. Phys., 2006, 8, 3423.
    [40] M. D. Argyle, K. Chen, C. Resini, C. Krebs, A. T. Bell and E. Iglesia, J. Phys. Chem. B, 2004, 108, 2345.
    [41] X. Fang, Y. Bando, G. Shen, C. Ye, U. K. Gautam, P. M. F. J. Costa, C. Zhi, C. Tang and D. Golberg, Adv. Mater., 2007, 19, 2593.
    [42] M. Maruyama, A. Iwase, H. Kato, A. Kudo and H. Onishi, J. Phys. Chem. C, 2009, 113, 13918.
    [43] Y. C. Lee, H. Teng, C. C. Hu and S. Y. Hu, Electro. Sol. Stat. Lett., 2008, 11, P1.
    [44] S. Cabuk, H. Akkus and A. M. Mamedov, Physica B, 2007, 394, 81.
    [45] M. Wiegel, M. H . J. Emond, E. R. Stobbe and G. Blasse, J. Phys. Chem. Solids, 1994, 55, 773.
    [46] K. Nasu, Phys. Rev. B, 2003, 67, 174111.
    [47] V. S. Vikhnin and S. Kapphan, Phys. Sol. Stat., 1998, 40, 834.
    [48] V. S. Vikhnin, Phys. Sol. Stat., 2005, 47, 1548.
    [49] R. Leonelli and J. L. Brebner, Phys. Rev. B, 1986, 33, 8649.
    [50] M. Aguilar and F. Agullo-Lopez, J. Appl. Phys., 1982, 53, 9009.
    [51] T. Hasegawa, M. Shirai and K. Tanaka, J. Lumin., 2000, 87-89, 1217.
    [52] R. I. Eglitis, E. A. Kotomin and G. Borstel, J. Phys.: Condens. Mater., 2002, 14, 3735.
    [53] Y. Li, X. Fang, N. Koshizaki, T. Sasaki, L. Li, S. Gao, Y. Shimizu, Y. Bando and D. Golberg, Adv. Funct. Mater., 2009, 19, 2467.
    [54] V. A. Trepakov, V. S. Vikhnin, S. Kapphan, L. Jastrabik, J. Licher and P. P. Syrnikov, J. Lumin., 2000, 87-89, 1126.
    [55] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik and J. Rosa, J. Appl. Phys., 2003, 93, 6056.
    [56] S. E. Kapphan, A. I. Gubaev and V. S. Vikhnin, Phys. Stat. Sol. C, 2005, 2, 128.
    [57] B. Bouma and G. Blasse, J. Phys. Chem. Sol., 1995, 56, 261.
    [58] X. Fang, C. H. Ye, X. S. Peng, Y. H. Wang, Y. C. Wu and L. D. Zhang, J. Mater. Chem., 2003, 13, 3040.
    [59] X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, J. Mater. Chem., 2008, 18, 509.
    [60] X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide and D. Golberg, Adv. Mater., 2009, 21, 2034.
    Chapter 6
    [1] R. M. N. Yerga, M. C. A. Galvan, F. Del Valle, J. A. de la Mano and J. L. G. Fierro, ChemSusChem, 2009, 2, 471.
    [2] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
    [3] A. Galinska and J. Walendziewski, Energy & Fuels, 2005, 19, 1143.
    [4] J. C. Escudero, S. Cervera-March, J. Gimenez and R. Simarro, J. Catal., 1990, 123, 319.
    [5] R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys., 2005, 7, 2241.
    [6] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature, 2001, 414, 625.
    [7] A. Kudo, H. Kato and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571.
    [8] K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda, Chem. Mater., 2005, 17, 5161.
    [9] H. Y. Lin, T. H. Lee and C. Y. Sie, Int. J. Hydro. Energy, 2008, 33, 4055.
    [10] H. Kato and A. Kudo, Catal. Lett., 1999, 58, 153.
    [11] A. Kudo and H. Kato, Chem. Phys. Lett., 2000, 331, 373.
    [12] H. Kato and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
    [13] H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
    [14] A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chem. Lett., 2004, 33, 1260.
    [15] Y. He, Y. Zhu and N. Wu, J. Solid State Chem., 2004, 177, 3868.
    [16] D. G. Prob and P. A. Maggard, J. Solid State Chem., 2006, 179, 1727.
    [17] W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.
    [18] C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.
    [19] Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura and K. Domen, Bull. Chem. Soc. Jpn., 2008, 80, 423.
    [20] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
    [21] M. Choi, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 014115.
    [22] J. M. Lehn, J. P. Sauvage, R. Ziessel and Nouv. J. Chim., 1980, 4, 623.
    [23] Z. G. Yi and J. H. Ye, Appl. Phys. Lett., 2007, 91, 254108.
    [24] Z. G. Li, Y. X. Wang, J. W. Liu, G. Chen, Y. X. Li and C. Zhou, Int. J. Hydro. Energy, 2009, 34, 147.
    [25] A. Iwase, H. Kato and A. Kudo, Catal. Lett., 2006, 108, 7.
    [26] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, Chem. Lett., 2008, 37, 138.
    [27] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
    [28] J. Choi, S. Y. Ryu, W. Balcerski, T. K. Lee and M. R. Hoffmann, J. Mater. Chem., 2008, 18, 2371.
    [29] K. Domen, S. Naito, T. Onishi and K. Tamaru, Chem. Phys. Lett., 1982, 92, 433.
    [30] K. Domen, A. Kudo and T. Ohnishi, J. Catal., 1986, 102, 92.
    [31] A. Kudo, A. Tanaka, K. Domen and T. Onishi, J. Catal., 1988, 111, 296.
    [32] R. K. Selvan, V. Krishnan, C. O. Augustin, H. Bertagnolli, C. S. Kim and A. Gedanken, Chem. Mater., 2008, 20, 429.
    [33] A. R. West, Basic Solid State Chemistry (2nd Ed.), John Wiley & Sons LTD, New York, 1999, p. 319.
    [34] K. Klier and K. Kuchynka, J. Catal., 1966, 6, 62.
    [35] A. Bielański and M. Najbar, J. Catal., 1972, 25, 398.
    [36] M. Breysse, B. Claudel, L. Faure, M. Guenin and R. J. J. Williams, J. Catal., 1976, 45, 137.
    [37] A. Bielański and J. Haber, Catal. Rev., 1979, 19, 1.
    [38] D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim and J. S. Lee, J. Catal., 2000, 193, 40.
    [39] K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, J. Phys. Chem., 1986, 90, 292.
    [40] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
    [41] J. J. Zou, C. J. Liu and Y. P. Zhang, Langmuir, 2006, 22, 2334.
    [42] W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem., 1994, 98, 13669.
    [43] R. W. Cairns and E. Ott, J. Am. Chem. Soc., 1933, 55, 527.
    [44] K. E. Karakitsou and X. E. Verykios, J. Phys. Chem., 1993, 97, 1184.
    [45] A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Chem. Phys. Lett., 2001, 336, 424.
    [46] J. Disdier, J. Herrmann and P. Pichat, J. Chem. Soc., Farad. Trans., 1983, 79, 651.
    [47] C. J. Yang, J. Park and Y. R. Cho, Adv. Engin. Mater., 2007, 9, 88.
    [48] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
    [49] B. G. Streetman, S. Banerjee, Solid State Electronic Devices (5th Ed.), Prentice Hall, Upper Saddler River, NJ, 2000, Chapter 5, p. 142.
    [50] D. Wang, Z. Zou and J. Ye, Chem. Mater., 2005, 17, 3255.
    [51] A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani and L. Palmisano, Catal. Today, 2002, 75, 87.
    [52] A. Di Paola, E. García-López, G. Marcì, C. Martin, L. Palmisano, V. Rives and A. M. Venezia, Appl. Catal. B, 2004, 48, 223.
    [53] M. Bellardita, M. Addamo, A. Di Paola and L. Palmisano, Chem. Phys., 2007, 339, 94.
    Chapter 7
    [1] K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
    [2] A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
    [3] H. Tributsch, Int. J. Hydro. Energy, 2008, 33, 5911.
    [4] J. Li and J. Z. Zhang, Coord. Chem. Rev., 2009, 253, 3015.
    [5] E. Serrano, G. Rus and J. Garcia-Martinez, Renew. Sust. Energy Rev., 2009, 13, 2373.
    [6] Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
    [7] S. Zhang, G. Zhang, S. Yu, X. Chen and X. Zhang, J. Phys. Chem. C, 2009, 113, 20029.
    [8] C. C. Hu and H. Teng, Appl. Catal. A: Gen., 2007, 331, 44.
    [9] J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydro. Energy, 2007, 32, 2269.
    [10] C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
    [11] X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.
    [12] M. Yang, X. Huang, S. Yan, Z. Li, T. Yu, and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
    [13] J. Lv, T. Kako, Z. Li, Z. Zou and J. Ye, J. Phys. Chem. C, 2010, 114, 6157.
    [14] C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
    [15] J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydro. Energy, 2008, 33, 2897.
    [16] C. C. Hu, J. N. Nian and H. Teng, Sol. Energy Mater. Sol. Cells, 2008, 92, 1071.
    [17] C. K. Lee, M. D. Lyu, S. S. Liu, and H. C. Chen, J. Taiwan Inst. Chem. Egrs., 2009, 40, 463.
    [18] P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
    [19] S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler and J. A. Turner, J. Electrochem. Soc., 1995, 142, L238.
    [20] I. M. Huygens, K. Strubbe, W. P. Gomes, J. Electrochem. Soc., 2000, 147, 1797.
    [21] T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama and A. Yoshida, J. Mater. Sci., 2006, 41, 3527.
    [22] N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen and K. Sato, Chem. Lett., 2006, 5, 796.
    [23] N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato and Y. Inoue, Catal. Today, 2007, 129, 407.
    [24] K. Fujii, K. Kusakabe and K. Ohkawa, Jpn. J. Appl. Phys., 2005, 44, 7433.
    [25] K. Kamata, K. Maeda, D. Lu, Y. Kako and K. Domen, Chem. Phys. Lett., 2009, 470, 90.
    [26] H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira and Y. Inoue, J. Phys. Chem. B, 2005, 109, 22995.
    [27] J. Sato, N. Saito, H. Nishiyama and Y. Inoue, J. Phys. Chem. B, 2001, 105, 6061.
    [28] C. C. Wu, K. W. Cheng, W. S. Chang and T. C. Lee, J. Taiwan Inst. Chem. Egrs., 2009, 40, 180.
    [29] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Phys. Chem. C, 2009, 113, 1560.
    [30] T. L. Li, and H. Teng, J. Mater. Chem., 2010, 20, 3656.
    [31] R. F. Davis, Proc. I.E.E.E., 1991, 79, 702.
    [32] C. C. Chen and C. C. Yeh, Adv. Mater., 2000, 12, 738.
    [33] G. L. Martinez, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electron. Mater., 2000, 29, 325.
    [34] R. García, G. A. Hirata, M. H. Farías and J. McKittrick, Mater. Sci. Engin.: B, 2002, 90, 7.
    [35] B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars and U. K. Mishra, J. Mater. Chem., 2005, 15, 1891.
    [36] W. C. Lan, C. D. Tsai and C. W. Lan, J. Taiwan Inst. Chem. Engrs., 2009, 40, 475.
    [37] T. Futatsuki, T. Oe, H. Aoki, N. Komatsu, C. Kimura and T. Sugino, Jpn. J. Appl. Phys., 2009, 48, 04C006.
    [38] T. Thomas, X. Guo, M. Chandrashekhar, C. B. Poitras, W. Shaff, M. Dreibelbis, J. Reiherzer, K. Li, F. J. Disalvo, M. Lipson and M. G. Spencer, J. Crys. Growth, 2009, 311, 4402.
    [39] P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou and Y. Bai, Appl. Phys. Lett., 2009, 95, 211907.
    [40] B. Mazumder and A. L. Hector, Top. Catal., 2009, 52, 1472.
    [41] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2005, 109, 20504.
    [42] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.
    [43] X. Sun, K. Maeda, M. L. Faucheur, K. Teramura and K. Domen, Appl. Catal. A: Gen., 2007, 327, 114.
    [44] T. Hirai, K. Maeda, M. Yoshida, J. Kubota, S. Ikeda, M. Matsumura and K. Domen, J. Phys. Chem. C, 2007, 111, 18853.
    [45] K. Maeda, H. Hashiguchi, H. Masuda, R. Abe and K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
    [46] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.
    [47] K. Maeda, H. Masuda and K. Domen, Catal. Today, 2009, 147, 173.
    [48] H. Y. Chen, W. Wen, Q. Wang, J. C. Hanson, J. T. Muckerman, E. Fujita, A. L. Frenkel and J. A. Rodriguez, J. Phys. Chem. C, 2009, 113, 3650.
    [49] H. Y. Chen, L. P. Wang, J. M. Bai, J. C. Hanson, J. B. Warren, J. T. Muckerman, E. Fujita and J. A. Rodriguez, J. Phys. Chem. C, 2010, 114, 1809.
    [50] J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou, J. Mol. Catal. A, 2010, 325, 48.
    [51] C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J. Y. Saillard and G. de With, J. Mater. Chem., 2001, 11, 1248.
    [52] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B, 2003, 107, 1798.
    [53] T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, Res. Chem. Intermed., 2007, 33, 13.
    [54] M. Yashima, Y. Lee and K. Domen, Chem. Mater., 2007, 19, 588.
    [55] M. Martin, R. Dronskowski, J. Janek, K. D. Becker, D. Roehrens, J. Brendt, M. W. Lumey, L. Nagarajan, I. Valov and A. Börger, Prog. Solid State Chem., 2009, 37, 132.
    [56] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
    [57] G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, W. R. L. Lambrecht, B. Segall and H. Morkoc, J. Electron. Mater., 1995, 24, 225.
    [58] C. F. Shih, N. C. Chen and C. Y. Tseng, C. Y. Thin Solid Films, 2008, 516, 5016.
    [59] S. H. Wei and A. Zunger, Appl. Phys. Lett., 1996, 69, 2719.
    [60] T. Maruyama, Y. Miyajima, K. Hata, S. H. Cho, K. Akimoto, H. Okumura, S. Yoshida and H. Kato, J. Electron. Mater., 1998, 27, 200.
    [61] N. Esser, M. Rakel, C. Cobet, W. G. Schmidt, W. Braun and M. Cardona, Phys. Stat. Sol. (b), 2005, 13, 2601.
    [62] V. Fiorentini, M. Methfessela and M. Scheffler, Phys. Rev. B, 1993, 47, 13353.
    [63] B. Bouhafs, F. Litimein, Z. Dridi and P. Ruterana, P. Phys. Stat. Sol. (b), 2003, 236, 61.
    [64] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin and C. F. McConville, Phys. Rev. B, 2008, 78, 03308.
    Chapter 8
    a) K. Maeda and K. Domen, J. Phys. Chem. C, 2007, 111, 7851.; b) V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1, 26.; c) A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.; d) J. Li and J. Z. Zhang, Coord. Chem. Rev., 2009, 253, 3015.; e) E. Serrano, G. Rus and J. Garcia-Martinez, Renewable Sustainable Energy Rev., 2009, 13, 2373.
    [2] a) J. N. Nian, C. C. Hu and H. Teng, Int. J. Hydrogen Energy, 2008, 33, 2897.; b) C. C. Hu, J. N. Nian and H. Teng, Sol. Energy Mater. Sol. Cells, 2008, 92, 1071.; c) T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.; d) T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang and H. Teng, Adv. Funct. Mater., 2010, 20, 2255.; e) R. M. N. Yerga, M. C. A. Galván, F. del Valle, J. A. V. de la Mano and J. L. G. Fierro, ChemSusChem, 2009, 2, 471.
    [3] a) U. Diebold, Surf. Sci. Rep., 2003, 48, 53.; b) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269.; c) C. C.Tsai and H. Teng, Appl. Surf. Sci., 2008, 254, 4912.; d) G. Zhang, X. Ding, Y. Hu, B. Huang, X. Zhang, X. Qin, J. Zhou and J. Xie, J. Phys. Chem. C, 2008, 112, 17994.; e) D. Y. C. Leung, X. Fu, C. Wang, M. Ni, M. K. H. Leung, X. Wang and X. Fu, ChemSusChem, 2010, 3, 681.
    [4] a) C. C. Tsai and H. Teng, Chem. Mater., 2006, 18, 367.; b) C. C. Tsai and H. Teng, Langmuir, 2008, 24, 3434.; c) B. Cojocaru, S. Neaţu, V. I. Pârvulescu, V. Şomoghi, N. Petrea, G. Epure, M. Alvaro and H. Garcia, ChemSusChem, 2009, 2, 427.; d) C. G. Silva and J. L. Faria, ChemSusChem, 2010, 3, 609.
    [5] a) K. P. Wang and H. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489.; b) P. T. Hsiao, Y. L. Tung and H. Teng, J. Phys. Chem. C, 2010, 114, 6762.
    [6] a) W. H. Lin, C. Cheng, C. C. Hu and H. Teng, Appl. Phys. Lett., 2006, 89, 211904.; b) C. C. Hu and H. Teng, Appl. Catal. A, 2007, 331, 44.; c) J. W. Liu, G. Chen, Z. H. Li and Z. G. Zhang, Int. J. Hydrogen Energy, 2007, 32, 2269.; d) C. C. Hu, C. C. Tsai and H. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
    [7] a) A. Iwase, H. Kato and A. Kudo, ChemSusChem, 2009, 2, 873.; b) X. Li and J. Zang, J. Phys. Chem. C, 2009, 113, 19411.; c) S. C. Yan, Z. Q. Wang, Z. S. Li and Z. G. Zou, Solid State Ionics, 2009, 180, 1539.; d) C. C. Hu and H. Teng, J. Catal., 2010, 272, 1.
    [8] a) Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li and C. Zhou, Int. J. Hydrogen Energy, 2009, 34, 147.; b) M. Yang, X. Huang, S. Yan, Z. Li, T. Yu and Z. Zou, Mater. Chem. Phys., 2010, 121, 506.
    [9] a) T. Mitsuyama, A. Tsutsumi, T. Hata, K. Ikeue and M. Machida, Bull. Chem. Soc. Jpn., 2008, 81, 401.; b) T. Mitsuyama, A. Tsutsumi, S. Sato, K. Ikeue and M. Machida, J. Solid State Chem., 2008, 181, 1419.; c) K. Ikeue, T. Mitsuyama, K. Arayama, A. Tsutsumi and M. Machida, J. Ceram. Soc. Jpn., 2009, 117, 1161.; d) M. Nyman, M. A. Rodriguez, L. E. S. Rohwer, J. E. Martin, M. Waller and F. E. Osterloh, Chem. Mater., 2009, 21, 4731.; e) Y. Li, G. Chen, C. Zhou and Z. Li, Catal. Lett., 2008, 123, 80.
    [10] T. Puangpetch, T. Sreethawong, S. Yoshikawa and S. Chavadej, J. Mol. Catal. A: Chem., 2009, 312, 97.
    [11] a) K. Ikeue, S. Shiiba and M. Machida, Chem. Mater., 2010, 22, 743.; b) H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater., 2010, 22, 951.; c) H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang and F. E. Osterloh, Chem. Mater., 2010, 22, 3362.; d) F. A. Frame and F. E. Osterloh, J. Phys. Chem. C, 2010, 114, 10628.
    [12] a) S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler and J. A. Turner, J. Electrochem. Soc., 1995, 142, L238.; b) I. M. Huygens, K. Strubbe and W. P. Gomes, J. Electrochem. Soc., 2000, 147, 1797.; c) N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen and K. Sato, Chem. Lett., 2006, 35, 796.; d) N. Arai, N. Saito, H. Nishiyama, K. Domen, H. Kobayashi, K. Sato and Y. Inoue, Catal. Today, 2007, 129, 407.
    [13] a) T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama and A. Yoshida, J. Mater. Sci., 2006, 41, 3527.; b) K. Fujii, K. Kusakabe and K. Ohkawa, Jpn. J. Appl. Phys., 2005, 44, 7433.; c) K. Kamata, K. Maeda, D. Lu, Y. Kako and K. Domen, Chem. Phys. Lett., 2009, 470, 90.; d) J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 2008, 93, 162107.
    [14] a) S. Zhang, G. Zhang, S. Yu, X. Chen and X. Zhang, J. Phys. Chem. C, 2009, 113, 20029.; b) G. Zhang, M. Li, S. Yu, S. Zhang, B. Huang and J. Yu, J. Colloid. Interface Sci., 2010, 345, 467.; c) V. B. R. Boppana, D. J. Doren and R. F. Lobo, ChemSusChem, 2010, 3, 814.; d) J. Huang, K. Ding, Y. Hou, X. Wang and X. Fu, ChemSusChem, 2008, 1, 1011.; e) S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Phys. Chem. C, 2009, 113, 1560.
    [15] a) K. Karch, J. M. Wagner and F. Bechstedt, Phys. Rev. B, 1998, 57, 7043.; b) T. U. Kampen, M. Eyckeler and W. Mönch, Appl. Surf. Sci., 1998, 123/124, 28.; c) T. Maruyama, Y. Miyajima, K. Hata, S. H. Cho, K. Akimoto, H. Okumura, S. Yoshida and H. Kato, J. Electro. Mater., 1998, 27, 200.
    [16] a) C. Stampfl and C. G. Van de Walle, Phys. Rev. B, 1999, 59, 5521.; b) G. L. Martinez, M. R. Curiel, B. J. Skromme and R. J. Molnar, J. Electro. Mater., 2000, 29, 325.; c) C. Persson, B. E. Sernelius, A. Ferreira da Silva, C. M. Araújo, R. Ahuja and B. Johansson, J. Appl. Phys., 2002, 92, 3207.
    [17] a) W. C. Lan, C. D. Tsai and C. W. J. Lan, J. Taiwan Inst. Chem. Engrs., 2009, 40, 475.; b) T. Thomas, X. Guo, M. Chandrashekhar, C. B. Poitras, W. Shaff, M. Dreibelbis, J. Reiherzer, K. Li, F. J. Disalvo, M. Lipson and M. G. Spencer; J. Crys. Growth, 2009, 311, 4402.; c) P. Xiao, X. Wang, J. Wang, F. Ke, M. Zhou and Y. Bai, Appl. Phys. Lett., 2009, 95, 211907.; d) K. Laaksonen, M. G. Ganchenkova and R. M. Nieminen, J. Phys.: Condens. Matter, 2009, 21, 015803.
    [18] a) R. F. Davis, Proc. IEEE, 1991, 79, 702.; b) C. G. Van de Walle and J. Neugebauer, J. Appl. Phys., 2004, 95, 3851.; c) W. Fang, C. Xiong, C. Zheng, L. Wang and F. Jiang, J. Lumin., 2007, 126, 636.; d) C. F. Shih, N. C. Chen, P. H. Chang and K. S. Liu, J. Electrochem. Soc., 2005, 152, G816.
    [19] a) S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar and L. F. Eastman, J. Appl. Phys., 1998, 83, 826.; b) D. Alexandrov, K. S. A. Butcher and M. Wintrebert–Fouquet, J. Cryst. Growth, 2004, 269, 77.; c) W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu and W. J. Schaff, J. Cryst. Growth, 2004, 269, 119.
    [20] a )Y. Inaba, T. Onozu, S. Takami, M. Kubo, A. Miyamoto and A. Imamura, Jpn. J. Appl. Phys., 2001, 40, 2991.; b) R. García, G. A. Hirata, M. H. Farías and J. McKittrick, Mater. Sci. Eng. B: Solid, 2002, B90, 7.; c) S. X. Li, E. E. Haller, K. M. Yu, W. Walukiewicz, J. W. Ager III, J. Wu, W. Shan, H. Lu and W. J. Schaff, Appl. Phys. Lett., 2005, 87, 161905.; d) B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars and U. K. Mishra, J. Mater. Chem., 2005, 15, 1891.
    [21] a) L. W. Ji, S. J. Young, C. H. Liu, W. Water, T. H. Meen and W. Y. Jywe, J. Cryst. Growth, 2008, 310, 2476.; b) J. W. Ager III, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff and W. Walukiewicz, Phys. Status Solidi B, 2008, 245, 873.; c) C. F. Shih, N. C. Chen and C. Y. Tseng, Thin Solid Films, 2008, 516, 5016.; d) W. R. L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoc and A. Rockett, Phys. Rev. B, 1994, 50, 14155; e) W. Walukiewicz, Physica B 2001, 302-303, 123.
    [22] a) S. K. Lin, K. T. Wu, C. P. Huang, C. T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu and T. Y. Lin, J. Appl. Phys., 2005, 97, 046101; b) V. Lebedev, V. M. Polyakov, S. Hauguth-Frank, V. Cimalla, Ch. Y. Wang, G. Ecke, F. Schwierz, A. Schober, J. G. Lozano, F. M. Morales, D. González and O. Ambacher, J. Appl. Phys., 2008, 103, 073715.
    [23] a) K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys. Chem. B, 2005, 109, 20504.; b) K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc., 2005, 127, 8286.; c) X. Sun, K. Maeda, M. L. Faucheur, K. Teramura and K. Domen, Appl. Catal. A, 2007, 327, 114.; d) K. Maeda, H. Hashiguchi, H. Masuda, R. Abe and K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
    [24] a) T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota and K. Domen, J. Phys. Chem. C, 2009, 113, 21458.; b) K. Maeda, H. Masuda and K. Domen, Catal. Today, 2009, 147, 173.; c) J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou, J. Mol. Catal. A: Chem., 2010, 325, 48.; d) T. Hisatomi, K. Maeda, D. Lu and K. Domen, ChemSusChem, 2009, 2, 336.
    [25] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, J. Phys. Chem. B, 1999, 103, 630.
    [26] a) Z. Yarar, B. Ozdemir and M. Ozdemir, J. Electro. Mater., 2007, 36, 1303.; b) N. Esser, M. Rakel, C. Cobet, W. G. Schmidt, W. Braun and M. Cardona, Phys. Status Solidi B, 2005, 13, 2601.; c) V. Fiorentini, M. Methfessel and M. Scheffler, Phys. Rev. B, 1993, 47, 13353.; d) B. Bouhafs, F. Litimein, Z. Dridi and P. Ruterana, Phys. Status Solidi B, 2003, 236, 61.; e) P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin and C. F. McConville, Phys. Rev. B, 2008, 78, 033308.

    無法下載圖示 校內:2020-10-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE