簡易檢索 / 詳目顯示

研究生: 許吉良
Hsu, Chi-Liang
論文名稱: 考慮土壤結構互制及流固耦合效應之儲槽受震反應分析
Seismic Responses of Storage Tank Considering Fluid-Solid Coupling and Soil-Structure Interaction
指導教授: 胡宣德
Hsuan-Te,Hu
共同指導教授: 吳俊霖
Chun-Lin,Wu
張長菁
Chang-Ching,Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: ABAQUS土壤結構互制流固耦合受震反應磨擦接觸行為
外文關鍵詞: ABAQUS, soil structure interaction, fluid-solid interaction, seismic response, frictional contact behavior
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣由於位在歐亞板塊和菲律賓海板塊的交界處,容易因為板塊擠壓造成大規模的地震,在921集集大地震之後,台灣對於結構建築的設計上要求更為嚴格,在結構物受震之後的影響,必須在設計時考慮得更全面,像是土壤結構互制的反應值得重視和注意,如果設計不良會使得結構受損甚至傾倒,若結構體是槽體等容器,會因內部液體的晃動造成槽體震盪放大,更容易破壞造成嚴重的後果。
    本文使用有限元素法分析軟體ABAQUS/Explicit來進行時間域的顯性動力分析,除了進行流固耦合CEL分析外,同時考量土壤結構互制來如實呈現桶槽受震的狀態。首先確認ABAQUS分析的結果可不可信,藉由桶槽內受力時所引致的側向位移和槽桶內受均部載重時的環向應力兩個試驗,來比較不同網格密度下之求解收斂性以驗證模型設定是否允當;模型建立完成後,採用擬靜態分析法模擬整體結構在自重下之平衡狀態,接著執行動力歷時分析模擬在地震作用下桶槽結構體之受力行為,並藉由多種條件來區分不同CASE,除了檢視有無樁體時受震的差異外,也會檢視有流體的情況下槽桶受流固耦合的反應。

    Since Taiwan is located at the intersection of the Eurasian plate and the Philippine Sea plate, large-scale earthquakes are prone to occur due to plate pressure. After the Chichi earthquake in 921, Taiwan imposed stricter requirements on the design of structural buildings., the impact of the structure after the earthquake must be considered more comprehensively in the design. For example, the interaction of soil structure deserves attention. If the design is not good, it will damage or even tilt the structure. If the structure is a water tank waiting for the container, the main body of the water tank will vibrate and expand due to the sloshing of the internal liquid, which is likely to be damaged and cause serious consequences .
    This paper uses the finite element method analysis software ABAQUS/Explicit to perform explicit dynamic analysis in the time domain. In addition to the fluid-solid coupling CEL analysis, the soil structure interaction is also considered to faithfully present the barrel-shaped and trough-shaped seismic state. First, confirm that the results of the ABAQUS analysis are not credible, and conduct two experiments on the lateral displacement caused by the cylinder force and the cylinder circumferential stress under uniform load through two experiments, and compare the solution density under different grids. Convergence is used to verify whether the model settings are appropriate; after the model is established, the quasi-static analysis method is used to simulate the equilibrium state of the overall structure under its own weight, and then dynamic time series analysis is performed to simulate the force behavior of the barrel-tank structure under the action.In addition to checking the difference between the pile and the earthquake, it also checks the response of the tank and barrel under fluid-solid coupling in the presence of liquid.

    論文摘要 ii 圖目錄 x 表目錄 xvi 第1章 緒論 1 1.1 研究目的 1 1.2 本文內容及架構 2 1.3 土壤結構互制 3 1.4 流固耦合分析 4 1.4.1 流固耦合控制方程 4 1.4.2 流固耦合分析方法 5 1.5 儲存槽地震力破壞種類 6 第2章 有限元素分析 9 2.1 有限元素法 9 2.2 元素種類 9 2.2.1 實體元素 9 2.2.2 殼元素 11 2.2.3 歐拉元素 11 2.3 顯性動力學 12 2.4 擬靜態分析 13 2.5 混凝土材料行為與模型 14 2.5.1 Concrete Damaged Plastic 14 2.5.2 CDP塑性行為 16 2.5.3 CDP材料損傷 19 2.6 鋼材料 20 2.6.1 鋼應力應變模型 20 2.6.2 金屬破壞準則 22 2.7 雷利阻尼的設定(Rayleigh Damping) 24 2.7.1 材料阻尼設定 25 2.7.2 土壤阻尼設定 26 第3章 驗證數值分析 27 3.1 概述 27 3.2 驗證一: 27 3.2.1數值分析方法: 28 3.2.2驗證一與數值分析方法結果與討論 29 3.3 驗證二: 31 3.3.1 數值分析方法: 31 3.3.2 驗證二與數值分析方法結果與討論: 32 第4章 數值模型之建立 33 4.1 概述 33 4.2 槽體SSI模型建立 33 4.2.1 材料參數 33 4.2.2 結構體模型簡述 34 4.2.3 土壤模型簡述 34 4.2.4 液體模型簡述 36 4.3 前置作業設定 37 4.3.1 界面接觸行為之模擬 37 4.3.2 雷利阻尼參數設定 38 4.4 輸入地震力 43 4.4.1 地震模擬1:sin波 43 4.4.2 地震模擬2:集集地震參考 44 第5章 分析之結果與討論 48 5.1 分析概述: 48 5.2 靜力分析: 48 5.2.1 Case1無樁體無流體重力分析 49 5.2.2 Case2有樁體無流體重力分析 52 5.2.3 Case3無樁體有流體重力分析 55 5.2.4 Case4有樁體有流體重力分析 57 5.2.5 不同Case重力平衡比較: 60 5.3 地震波數值解與分析結果比較: 62 5.3.1 Sin波數值解比較: 62 5.3.2 地震波數值比較: 63 5.4 動力分析 64 5.4.1 Case1 無樁體無流體動力分析: 65 5.4.2 Case2 有樁體無流體動力分析: 69 5.4.3 Case3 無樁體有流體流固耦合動力分析: 73 5.4.4 Case4 有樁體有流體流固耦合動力分析: 78 5.4.5 不同Case動力比較: 83 5.5 對流模態頻率與結構體比較: 90 5.5.1 流體模態頻率: 90 5.5.2 結構體自然頻率: 91 第6章 結論與改進方向 93 6.1 結論 93 6.2 改進方向 95 參考文獻 96 附錄:Case2有樁體無流體擬靜態分析Input File 100 附錄:Case4有樁體有流體重力分析Input File 119 附錄:Case4有樁體有流體動力分析Input File 128

    [1] 中華民國內政部營建署, “建築物耐震設計規範及解說部分規定修正規定,” no. 2, 2011.
    [2] 中華民國內政部建築研究所, “國際重大震災經驗啟示及建築耐震設計規範因應之研究,” 2004.
    [3] P. K. Malhotra, “Earthquake induced sloshing in tanks with insufficient freeboard,” Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng., vol. 16, no. 3, pp. 222–225, 2006, doi: 10.2749/101686606778026466.
    [4] D. Watkins and M. Tobolski, “Modal Combination of Seismically Induced,” 2013.
    [5] S. Lee, B. Kim, and Y. J. Lee, “Seismic Fragility Analysis of Steel Liquid Storage Tanks Using Earthquake Ground Motions Recorded in Korea,” Math. Probl. Eng., vol. 2019, 2019, doi: 10.1155/2019/6190159.
    [6] F. Paolacci, H. N. Phan, D. Corritore, S. Alessandri, O. S. Bursi, and M. S. Reza, “Seismic fragility analysis of steel storage tanks,” COMPDYN 2015 - 5th ECCOMAS Themat. Conf. Comput. Methods Struct. Dyn. Earthq. Eng., no. May, pp. 2054–2065, 2015, doi: 10.7712/120115.3522.1040.
    [7] H. Persson, Tank Fires. SP Sveriges Provnings- och Forskningsinstitut, 2004.
    [8] M. Sivý and M. Musil, “Seismic resistance of storage tanks containing liquid in accordance with principles of Eurocode 8 standard,” Stroj. Cas., vol. 66, no. 2, pp. 79–88, 2016, doi: 10.1515/scjme-2016-0021.
    [9] K. Bandyopadhyay, A. Cornell, C. Costantino, R. Kennedy, C. Miller, and A. Veletsos, “Seismic Design and Evaluation Guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances,” vol. 52361, 1995.
    [10] A. C. I. Committee, “Seismic Design of Liquid-Containing ( ACI 350 . 3-06 ),” Main, 2007.
    [11] T. Ibata, I. Nakachi, K. Ishida, and J. Yokozawa, “Damage to storage tanks caused by the 2011 Tohoku earthquake and tsunami and proposal for structural assessment method for cylindrical storage tanks,” IGT Int. Liq. Nat. Gas Conf. Proc., vol. 2, pp. 820–837, 2013.
    [12] “Bolted & Welded Steel Storage Tanks.” https://superiortank.com/ (accessed Jul. 09, 2020).
    [13] 許皓程, “馬鞍山核電廠圍阻體土壤結構互制之動力分析,” 國立成功大學碩士論文, 2018.
    [14] P.Lo, “Analysis of Soil-structure Interaction By Sub-structure Method,” 2003.
    [15] 葉鼎盛, “離岸風機結構與樁土互制之有限元素自振分析,” 國立成功大學碩士論文, 2015.
    [16] M. Ashiquzzaman and K. J. Hong, “Simplified Model of Soil-Structure Interaction for Seismically Isolated Containment Buildings in Nuclear Power Plant,” Structures, vol. 10, pp. 209–218, 2017, doi: 10.1016/j.istruc.2016.09.014.
    [17] 陳正興、柯永彥、許尚逸, “核能一廠乾式貯存設施結構地震之安全審查與確認分析期末報告,” 2006.
    [18] 宋学官, “流固耦合分析基礎,” in 流固耦合分析与工程实例, 水利水电出版社, 2012, pp. 1–13.
    [19] S. B. , “Coupled Eulerian Lagrange (CEL) Analysis with ABAQUS Eulerian and Lagrangian Approach.” https://simplifiedfem.wordpress.com/about/coupled-eulerian-lagrange-cel-analysis-with-abaqus/ (accessed Jul. 09, 2020).
    [20] J. Jablonski, P. Carlucci, R. Thyagarajan, B. Nandi, and J. Arata, “Simulating Underbelly Blast Events using Abaqus/Explicit -CEL,” no. December, p. 14, 2012.
    [21] I. Smojver and D. Ivančević, “Coupled Euler Lagrangian approach using Abaqus/explicit in the bird strike aircraft damage analysis,” 2010 SIMULIA Cust. Conf., pp. 1–14, 2010, [Online]. Available: http://www.simulia.com/download/pdf2010/Smojver_SCC2010.pdf.
    [22] G. Qiu, S. Henke, and J. Grabe, “Applications of Coupled Eulerian-Lagrangian Method to Geotechnical Problems with Large Deformations,” SIMULIA Cust. Conf., no. 2001, pp. 1–16, 2009, [Online]. Available: http://www.simulia.com/download/pdf2009/Qiu_SCC2009.pdf.
    [23] M. Tavano, “Seismic response of tank-fluid systems: state of the art review and dynamic buckling analysis of a steel tank with the added mass method,” Ingegneria e Architettura, 2012.
    [24] N. Buratti and M. Tavano, “Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method,” Pacific Conf. Earthq. Eng., no. 056, pp. 1–6, 2007, doi: 10.1002/eqe.
    [25] Dassault Systèmes Simulia, “Abaqus Analysis User’s Guide, vol4,” in ABAQUS 6.14 Analysis User’s Guide, vol. IV, 2014.
    [26] 詹琍尹, “非韌性鋼筋混凝土結構受近斷層地震力之三維有限元素非線性分析,” 國立成功大學碩士論文, 2019.
    [27] Dassault Systèmes Simulia, “Abaqus Analysis User’s Guide, vol2,” in ABAQUS 6.14 Analysis User’s Guide, vol. II, 2014.
    [28] 鄭鈞, “以實例說明隱式與顯式求解法 - YouTube,” Simutech Solution Corp. https://www.youtube.com/watch?v=qE1cWwff05U (accessed Jul. 09, 2020).
    [29] Dassault Systèmes Simulia, “Abaqus Analysis User’s Guide, vol3,” ABAQUS 6.14 Anal. User’s Guid., vol. III, p. 294, 2014.
    [30] C. WF, Plasticity in reinforced concrete. McGraw-Hill Book Company, 1982.
    [31] ASCE, “State of the art report on finite element analysis of reinforced concrete,” 1982.
    [32] 中華民國內政部營建署, “混凝土結構設計規範,” 2019.
    [33] V. Birtel and P. Mark, “Parameterised Finite Element Modelling of RC Beam Shear Failure,” Ababqus User’s Conf., pp. 95–108, 2006.
    [34] “ASTM A543 Steel, Grade B.” http://www.matweb.com/search/DataSheet.aspx?MatGUID=8353bfc394b04ea1820179f1d9ff0886 (accessed Jul. 03, 2020).
    [35] “STRESS - STRAIN BEHAVIOUR OF STRUCTURAL STEEL| MOSTECH INFORMATION SHEET.” http://mostechinformationsite.blogspot.com/2012/11/stress-strain-behaviour-of-structural.html (accessed Jul. 09, 2020).
    [36] Simutech Solution Corp., “Abaqus 破壞力學 Part 2|Abaqus Fracture Mechanism - YouTube,” Simutech Solution Corp. https://www.youtube.com/watch?v=FYKlhcC1S6c&list=PLgaamG_HvVCxbEI-FmgXuk53nhPr4pZVE&index=2 (accessed Jul. 09, 2020).
    [37] I. Chowdhury and S. P. Dasgupta, “Computation of Rayleigh damping coefficients for large systems,” Electron. J. Geotech. Eng., vol. 8 C, 2003.
    [38] 林琦焜, “圖解梯度、散度與旋度,” 數學傳播, vol. 39, no. 2, pp. 30–55, 2015.
    [39] F. L. Baker, E. H. , Kovalevsky, L. , and Rish, “Structural Analysis of Shells,” no. April 1968, 1972.
    [40] 王乙翕, “層狀岩盤之承載力,” 國立中央大學碩士論文, 2000.
    [41] W. F. Robert, T. M. Alan, and J. P. Philip, “Introduction to fluid mechanics, Fifth edition,” Introduction to Fluid Mechanics, Fifth Edition. pp. 1–745, 2015.
    [42] J. D. Tippmann, S. C. Prasad, and P. N. Shah, “2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian ( CEL ) Capability of Abaqus / Explicit,” Simulia Cust. Conf., pp. 1–11, 2009.
    [43] Dassault Systèmes Simulia, “Abaqus Analysis User’s Guide, vol5,” ABAQUS 6.14 Anal. User’s Guid., vol. V, p. 946, 2014.
    [44] X. Chen, J. Duan, and Y. Li, “Mass proportional damping in nonlinear time-history analysis,” no. Ic3me, pp. 567–571, 2015, doi: 10.2991/ic3me-15.2015.112.
    [45] L. Schnabel, “Shake91 user’s manual.” 1972.
    [46] F. Hammelmuller and C. Zehetner, “Increasing numerical efficiency in coupled eulerian-lagrangian metal forming simulations,” Proc. 8th Int. Conf. Comput. Plast. - Fundam. Appl. COMPLAS 2015, pp. 727–733, 2015.
    [47] P. E. John D. Stevenson, Ph. D. , Seismic analysis of safety-related nuclear structures. American Society of Civil Engineers, 2017.
    [48] A. S. Sergaliyev and L. A. Khajiyeva, Advances in Mechanism Design II, vol. 44. 2017.
    [49] Technical Committee CEN/TC 250 “Structural Eurocodes,” “Eurocode 8 - Design of structures for earthquake resistance - Part 4: Silos, tanks and pipelines,” vol. 1, no. 2005, 2011.
    [50] P. K. Malhotra, T. Wenk, and M. Wieland, “Simple Procedure for Seismic Analysis of Liquid-Storage Tanks,” Dyn. Econ. Theory, pp. 1–8, 2010, doi: 10.1017/cbo9780511628474.002.
    [51] Institute American Petroleum, “API 650: Welded Steel Tanks for Oil Storage,” p. 449, 2007.

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE