簡易檢索 / 詳目顯示

研究生: 曾儒雅
Tseng, Ju-Ya
論文名稱: 鈮摻雜對鍺酸鑭基磷灰石電解質晶體結構之研究
Crystal Structure Studies of La/Ge Based Apatite Ionic Conductors Doped with Nb
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 鈮摻雜鍺酸鑭固態氧化物燃料電池磷灰石結構
外文關鍵詞: lanthanum germanium, SOFC, apatite
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用固態反應法合成鈮摻雜鍺酸鑭基電解質材料,藉由不同添加量之 Nb5+ 取代 La9.5Ge6-xNbxO26.25+y 中的 Ge4+ 位置 (x = 0,0.1,0.15,0.2,0.25,0.5,0.75,1),觀察其晶體結構與導電性質之關聯性。
    實驗結果顯示隨著鈮添加量的增加,於 x = 0.5 便出現二次相,已超出固溶範圍。針對煅燒粉末以 Rietveld 方法模擬精算晶格常數,得到固溶極限內之鍺氧四面體體積會因為鈮的摻雜而增加,進而影響整體晶體結構。而鈮的摻雜會使燒結緻密之溫度提高,且觀察到高溫下之 La9.5Ge6O26.25 會因為鍺揮發產生二次相 (GeO2),當 x ≥ 0.5 之燒結體隨著溫度升高亦會生成較多二次相 (LaNbO4 和 La3NbO7)。
    以 1350℃/3 h 作為燒結條件之試片,在 x = 0.2 時具有最佳導電率 (0.0248 S/cm),推測此比例之鈮摻雜造成晶格扭曲撐開程度較大,使得間隙式氧離子可以輕易通過;當 x = 0.75 時含有較多二次相則會使導電率下降,且活化能在二次相生成後隨之變高。

    A series of Niobium doped Lanthanum-Germanate apatite-type material, La9.5Ge6-xNbxO26.25+y (x = 0,0.1,0.15,0.2,0.25,0.5,0.75,1), have been prepared by solid-state synthesis. The result shows that, since Nb5+ ion has larger ionic radii than Ge4+ ion, crystal structure has been distort which makes interstitial oxygen can be migrated easily. On contrary, the conductivity decreases with second phase presented.
    The purpose of this paper is to study the relationship between crystal structure and conductivity. All La/Ge based powders have been calcined by 1100℃ for 3 hours and have been determined from X-ray powder diffraction data which uses Rietveld method. Then these specimens are sintered at 1350℃/3 h for measurement of conductivity. Second phase forms when Nb5+ dosage ≥ 0.5. The volume of Ge/Nb-O tetrahedron increases by Nb5+ doped. La9.5Ge5.8Nb0.2O26.35 has the highest conductivity (0.0248 S/cm) of this series at 800℃, and the conductivity of La9.5Ge5.25Nb0.75O26.625 decreases to 0.0075 S/cm.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究及理論基礎 4 2-1 燃料電池 4 2-1-1 燃料電池之原理 4 2-1-2 燃料電池之種類與優缺點 5 2-2 固態氧化物燃料電池 6 2-2-1 固態氧化物燃料電池之結構與原理 7 2-2-2 固態氧化物燃料電池電解質之種類 10 2-3 磷灰石固態電解質 15 2-3-1 磷灰石固態電解質之結構 17 2-3-2 磷灰石固態電解質之導電機制 18 2-4 鍺酸鑭基電解質 20 2-4-1 鍺酸鑭基電解質之性質 23 2-4-2 不同摻雜物對鍺酸鑭基電解質之影響 26 第三章 實驗方法與分析 33 3-1 粉末製備 34 3-1-1 起始原料 34 3-1-2 鈮摻雜鍺酸鑭基 La9.5Ge6-xNbxO26+y 粉末製備 34 3-1-3 粉末之熱差/熱重分析 35 3-1-4 粉末煅燒處理 36 3-2 煅燒粉末分析 36 3-2-1 X 光粉末繞射儀 36 3-2-2 掃描式電子顯微鏡 38 3-3 燒結體製備 38 3-4 燒結體分析 38 3-4-1 燒結收縮量測 38 3-4-2 燒結體密度量測 39 3-4-3 X 光繞射儀 39 3-4-4 掃描式電子顯微鏡 39 3-4-5 電性量測 40 3-4-6 Arrhenius 方程式 40 第四章 結果與討論 41 4-1 起始粉末分析 41 4-1-1 原料分析 41 4-1-2 熱差/熱重分析 44 4-2 煅燒粉末分析 45 4-2-1 結晶相分析 45 4-2-2 晶格常數計算 49 4-2-3 晶體結構模擬 56 4-2-4 微結構分析 60 4-3 燒結體分析 63 4-3-1 燒結收縮量測 63 4-3-2 燒結體密度計算 65 4-3-3 結晶相分析 67 4-3-4 微結構分析 70 4-3-5 電性分析 72 第五章 結論 75 參考文獻 76

    [1] S. Nakayama, H. Aono and Y. Sadaoka (1995), “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Chemistry Letters, 24, pp. 431~432.
    [2] S. Nakayama, T. Kageyama, H. Aono and Y. Sadaoka (1995), “Ionic conductivity of lanthanoid silicates Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb),” Journal of Materials Chemistry, 5, pp. 1801~1805.
    [3] L. León-Reina, E.R. Losilla, M. Martínez-Lara, M.C. Martín-Sedeño, S. Bruque, P.Núñez, D. V. Sheptyakov and M. A. G. Aranda, (2005), “High oxide ion conductivity in Al-doped germanium oxyapatite, ” Chemistry of Materials, 17 (3), pp. 596~600.
    [4] 林婉茹、徐永富、王錫福 (2012),「摻雜對磷灰石結構鍺酸鑭基電解質應用於固態氧化物燃料電池之特性影響研究」,國立台北科技大學材料工程與科學研究所碩士論文。
    [5] 發行人葉惠青 (2010),2010能源產業技術白皮書,台北:經濟部能源局,第 341 頁。
    [6] http://www.rz.uni-karlsruhe.de/~cf01/research/research_SOFC.html
    [7] http://www.fuelcelltoday.com/about-fuel-cells/technologies/sofc
    [8] http://ssrl.slac.stanford.edu/research/highlights_archive/rockyflats.html
    [9] Federico Gallino , Cristiana Di Valentin and Gianfranco Pacchioni (2011), “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys., 13, pp. 17667~17675.
    [10] http://www.doitpoms.ac.uk/tlplib/fuel-cells/printall.php
    [11] Junjiang Zhu and Arne Thomas (2009), “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92 (3–4), pp. 225~233.
    [12] S. Nakayama, Y. Higuchi, Y. Kondo, and M. Sakamoto (2004), “Effects of cation- or oxide ion-defect on conductivities of apatite-type La–Ge–O system ceramics,” Solid State Ionics, 170, pp. 219~223.
    [13] P.R. Slater, J.E.H. Sansom, and J.R. Tolchard (2005), “Development of Apatite-Type Oxide Ion Conductors,” Chemistry Record, 4 (3), pp. 373~384.
    [14] S. Nakayama and M. Sakamoto (1998), “Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), ” Journal of the European ceramic Society, 18, pp. 1413~1418.
    [15] H. Yoshioka (2007), “Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations,” Journal of the American Ceramic Society, 90, pp. 3099~3105.
    [16] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, and K. Itoh (1999), "Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” Journal of the European Ceramic Society, 19, pp. 507~510.
    [17] L. Leon-Reina, J. Manuel Porras-Vazquez, Enrique R. Losilla, and Miquel A. G. Aranda (2006), “Interstitial oxide positions in oxygen-excess oxyapatites,” Solid State Ionics, 177, pp. 1307~1315.
    [18] S. Nakayama and M. Sakamoto (2001), “Ionic conductivities of apatite-type Lax(GeO4)6O1.5x-12 (x=8-9.33) polycrystals,” Journal of Materials Science Letters, 20, pp. 1627~1629.
    [19] J.E.H. Sansom, L. Hildebrandt, and P.R. Slater (2002), “An Investigation of the Synthesis and Conductivities of La-Ge-O Based Systems,” lonics, 8, pp. 155~160.
    [20] A. Orera, T. B aikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith, M. S. Islam, E.Kendrick, and P. R. Slater (2011), “Strategies for the Optimisation of the Oxide Ion Conductivities of Apatite-Type Germanates,” Full Cells, 11, pp. 10~16.

    下載圖示 校內:2016-07-30公開
    校外:2018-07-30公開
    QR CODE