| 研究生: |
吳冠緯 Wu, Kuan-Wei |
|---|---|
| 論文名稱: |
以聚苯乙烯-區段-聚(2-乙烯基吡啶)微胞為模板的膠體鈣鈦礦奈米晶體溶液 Colloidal Perovskite Nanocrystals Templated by Polystyrene-block-Poly(2-vinylpyridine) Micelles in Solution. |
| 指導教授: |
孫亞賢
Sun, Ya-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 嵌段共聚物PS-b-P2VP核殼微胞 、鈣鈦礦量子點 、乳化效應 、錯合作用 、溶劑品質 |
| 外文關鍵詞: | block copolymer PS-b-P2VP core-shell micelles, perovskite quantum dots, emulsification effect, complexation, solvent quality |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦(perovskite)是一種新興材料,因其優秀的光學性質而被廣泛研究,但其低晶格能導致的穩定性問題限制了其大範圍應用。使用短鏈配體製備鈣鈦礦晶體是常見的方法,然而這些短鏈配體的分子鏈較短,導致它們在鈣鈦礦表面的鍵合是動態的,容易在溶劑中解離和重新結合,對抗環境穩定性的能力也較差,無法完全防止鈣鈦礦晶體在極性溶劑中快速降解。為了解決此問題,使用嵌段共聚物(BCP)作為長鏈配體來包覆鈣鈦礦晶體,以改善鈣鈦礦晶體的光學性質與穩定性。然而,現有研究中關於有機溶劑中微胞與鈣鈦礦之間的配位作用、離子錯合作用、解離、晶體生長及溶劑品質的影響尚未研究透徹。
在本研究中使用溶於甲苯中的嵌段共聚物PS-b-P2VP形成的核殼微胞作為模板合成並包覆鈣鈦礦量子點使其具備良好的穩定性。藉由光致發光螢光光譜儀(PL)、紫外-可見光光譜儀(UV-VIS)、穿透式電子顯微鏡(TEM)、小角度X光散射(SAXS)、廣角度X光繞射(WAXD)、動態光散射儀(DLS)、X射線繞射儀(XRD)等儀器,測量了核殼微胞結構變化和鈣鈦礦奈米晶體的光學性能。
我們定量了PS-b-P2VP核殼微胞的性質,發現低劑量甲醇會因與甲苯的極性差距進入親水性鏈段的P2VP核中,利用此特性將前驅體離子帶入微胞內部以合成鈣鈦礦。此外,我們也發現PS-b-P2VP與溴化鉛前驅體PbBr₂因吡啶與鉛的配位作用而形成[PbBr₃]⁻錯合體。此錯合體因乳化效應而富含於微胞內,並與甲醇帶入的Cs⁺離子結合形成CsPbBr₃鈣鈦礦奈米晶體。然而,當甲醇添加過多時,溶劑品質降低會導致CsPbBr₃鈣鈦礦產生晶體缺陷和光學性質降低,並促使錯合體[PbBr₄]²⁻的形成。由於高分子微胞化的能力減弱,無法阻止晶體熟化與團聚,最終在溶液內形成CsPb₂Br₅大晶體並失去光致發光能力。
Perovskite is an emerging material extensively studied for its excellent optical properties. However, its low lattice energy leads to stability issues, limiting its broad application. A common method for preparing perovskite crystals involves using short-chain ligands. However, these ligands have shorter molecular chains, resulting in dynamic bonding on the perovskite surface. This dynamic bonding causes dissociation and recombination of the perovskite in solvents, leading to insufficient environmental stability and rapid degradation of perovskite crystals in polar solvents. To address this issue, block copolymers (BCPs) are used as long-chain ligands to encapsulate perovskite crystals, thereby improving their optical properties and stability. However, current research has not thoroughly investigated the coordination interactions, ion complexation, dissociation, crystal growth, and solvent quality effects between micelles and perovskites in organic solvents.
In this study, we employed core-shell micelles self-assembled from the PS-b-P2VP block copolymer dissolved in toluene as templates to synthesize and encapsulate perovskite quantum dots. Various instruments, including photoluminescence spectroscopy (PL), UV-Vis spectroscopy (UV-VIS), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), dynamic light scattering (DLS), and X-ray diffraction (XRD), were used to measure the structural changes of the core-shell micelles and the optical performance of the perovskite nanocrystals.
We quantitatively analyzed the properties of PS-b-P2VP core-shell micelles and found that low doses of methanol penetrate the hydrophilic P2VP core due to the polarity difference with toluene. This characteristic was used to introduce precursor ions into the micelles to synthesize perovskite. Furthermore, we found that PS-b-P2VP and the lead precursor PbBr₂ formed [PbBr₃]⁻ complexes due to the coordination interaction between pyridine and lead. These complexes were enriched within the micelles due to the emulsification effect. Then, [PbBr₃]⁻ complexes combined with Cs⁺ ions introduced by methanol to form CsPbBr₃ perovskite nanocrystals. Additionally, we discovered that when excess methanol is added, CsPbBr₃ perovskites exhibit crystal defects and reduced optical properties. This is because decreased solvent quality promotes the formation of [PbBr₄]²⁻ complexes. As the micellization ability of the polymer weakens, it fails to prevent crystal maturation and aggregation, resulting in the formation of large CsPb₂Br₅ crystals in the solution. The formation of CsPb₂Br₅ crystals is indicated by decreased photoluminescence capability.
[1] Roduner, E. Size Matters: Why Nanomaterials Are Different. Chemical Society Reviews, 2006, 35, 583-592.
[2] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of The American Chemical Society, 2009, 131, 6050-6051.
[3] Zhu, P.; Zhu, J. Low‐Dimensional Metal Halide Perovskites and Related Optoelectronic Applications. InfoMat, 2020, 2, 341-378.
[4] Coe-Sullivan, S.; Liu, W.; Allen, P.; Steckel, J. S. Quantum Dots for Led Downconversion in Display Applications. ECS Journal of Solid State Science and Technology, 2012, 2, R3026.
[5] Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal Quantum Dot Solar Cells. Chemical Reviews, 2015, 115, 12732-12763.
[6] Gao, X.; Nie, S. Molecular Profiling of Single Cells and Tissue Specimens with Quantum Dots. Trends in Biotechnology, 2003, 21, 371-373.
[7] Yang, F.; Li, C.; Li, J.; Liu, P.; Yang, G. Carbyne Nanocrystal: One-Dimensional Van Der Waals Crystal. ACS Nano, 2021, 15, 16769-16776.
[8] Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano, 2010, 4, 2865-2873.
[9] Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. Flexible and Transparent MOS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 2013, 7, 7931-7936.
[10] Shin, D. H.; Shin, S. H.; Choi, S. H. Self-Powered and Flexible Perovskite Photodiode/Solar Cell Bifunctional Devices with MOS2 Hole Transport Layer. Applied Surface Science, 2020, 514, 145880.
[11] Fry, N. L.; Boss, G. R.; Sailor, M. J. Oxidation-Induced Trapping of Drugs in Porous Silicon Microparticles. Chemistry of Materials, 2014, 26, 2758-2764.
[12] Yang, J.; Zhu, Y.; Fan, M.; Sun, X.; Wang, W. D.; Dong, Z. Ultrafine Palladium Nanoparticles Confined in Core–Shell Magnetic Porous Organic Polymer Nanospheres as Highly Efficient Hydrogenation Catalyst. Journal of Colloid and Interface Science, 2019, 554, 157-165.
[13] Tsao, J.; Chowdhury, S.; Hollis, M.; Jena, D.; Johnson, N.; Jones, K.; Kaplar, R.; Rajan, S.; Van de Walle, C.; Bellotti, E. Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges. Advanced Electronic Materials, 2018, 4, 1600501.
[14] Chen, J.; Du, W.; Shi, J.; Li, M.; Wang, Y.; Zhang, Q.; Liu, X. Perovskite Quantum Dot Lasers. InfoMat, 2019, 2, 170-183.
[15] Yu, Y.; Fan, G.; Fermi, A.; Mazzaro, R.; Morandi, V.; Ceroni, P.; Smilgies, D. M.; Korgel, B. A. Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. The Journal of Physical Chemistry C, 2017, 121, 23240-23248.
[16] Samimi, E.; Karami, P.; Ahar, M. A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic. J Nanomed Res, 2017, 5, 00117.
[17] Li, L.; Carter, E. A. Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers. Journal of the American Chemical Society, 2019, 141, 10451-10461.
[18] Mora-Sero, I.; Giménez, S.; Fabregat-Santiago, F.; Gómez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.
[19] Yang, J. H.; Shi, L.; Wang, L. W.; Wei, S. H. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study. Scientific Reports, 2016, 6, 1-10.
[20] Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta Crystallographica Section B: Structural Science, 2008, 64, 702-707.
[21] Wang, L.; Liu, H.; Zhang, Y.; Mohammed, O. F. Photoluminescence Origin of Zero-Dimensional Cs4PbBr6 Perovskite. ACS Energy Letters, 2019, 5, 87-99.
[22] Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J. P.; Lee, J. W.; Song, J. K. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015, 15, 5191-5199.
[23] Zhou, H.; Yuan, S.; Wang, X.; Xu, T.; Wang, X.; Li, H.; Zheng, W.; Fan, P.; Li, Y.; Sun, L. Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 2017, 11, 1189-1195.
[24] Zhang, L.; Liu, X.; Li, J.; McKechnie, S. Interactions between Molecules and Perovskites in Halide Perovskite Solar Cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.
[25] Li, M.; Zhang, X.; Dong, T.; Wang, P.; Matras-Postolek, K.; Yang, P. Evolution of Morphology, Phase Composition, and Photoluminescence of Cesium Lead Bromine Nanocrystals with Temperature and Precursors. The Journal of Physical Chemistry C, 2018, 122, 28968-28976.
[26] Liu, M.; Zhao, J.; Luo, Z.; Sun, Z.; Pan, N.; Ding, H.; Wang, X. Unveiling Solvent-Related Effect on Phase Transformations in CsBr–PbBr2 System: Coordination and Ratio of Precursors. Chemistry of Materials, 2018, 30, 5846-5852.
[27] Zhu, Z.; Hadjiev, V. G.; Rong, Y.; Guo, R.; Cao, B.; Tang, Z.; Qin, F.; Li, Y.; Wang, Y.; Hao, F. Interaction of Organic Cation with Water Molecule in Perovskite MAPbI3: From Dynamic Orientational Disorder to Hydrogen Bonding. Chemistry of Materials, 2016, 28, 7385-7393.
[28] Ahmed, G. H.; Yin, J.; Bakr, O. M.; Mohammed, O. F. Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1340-1357.
[29] Hu, Y.; Schlipf, J.; Wussler, M.; Petrus, M. L.; Jaegermann, W.; Bein, T.; Müller-Buschbaum, P.; Docampo, P. Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.
[30] Kepenekian, M.; Traore, B.; Blancon, J. C.; Pedesseau, L.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J.; Mohite, A. D. Concept of Lattice Mismatch and Emergence of Surface States in Two-Dimensional Hybrid Perovskite Quantum Wells. Nano Letters, 2018, 18, 5603-5609.
[31] Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals. Advanced Functional Materials, 2018, 28, 1704288.
[32] Ravi, V. K.; Saikia, S.; Yadav, S.; Nawale, V. V.; Nag, A. CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability. ACS Energy Letters, 2020, 5, 1794-1796.
[33] Huang, Y.; Li, F.; Qiu, L.; Lin, F.; Lai, Z.; Wang, S.; Lin, L.; Zhu, Y.; Wang, Y.; Jiang, Y. Enhancing the Stability of CH3NH3PbBr3 Nanoparticles Using Double Hydrophobic Shells of SiO2 and Poly (Vinylidene Fluoride). ACS Applied Materials & Interfaces, 2019, 11, 26384-26391.
[34] Wang, B.; Zhang, C.; Huang, S.; Li, Z.; Kong, L.; Jin, L.; Wang, J.; Wu, K.; Li, L. Postsynthesis Phase Transformation for CsPbBr3/Rb4PbBr6 Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Interfaces, 2018, 10, 23303-23310.
[35] Liu, W.; Zheng, J.; Cao, S.; Wang, L.; Gao, F.; Chou, K. C.; Hou, X.; Yang, W. General Strategy for Rapid Production of Low-Dimensional All-Inorganic CsPbBr3 Perovskite Nanocrystals with Controlled Dimensionalities and Sizes. Inorganic Chemistry, 2018, 57, 1598-1603.
[36] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chemical Society Reviews, 2012, 41, 5969-5985.
[37] Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers Towards Mesoporous Materials for Energy Storage and Conversion Systems. Chemical Society Reviews, 2020, 49, 4681-4736.
[38] Chen, T.; Qiu, M.; Peng, Y.; Yi, C.; Xu, Z. Colloidal Polymer‐Templated Formation of Inorganic Nanocrystals and Their Emerging Applications. Small, 2023, 19, 2303282.
[39] Lu, J.; Yi, S. S.; Kopley, T.; Qian, C.; Liu, J.; Gulari, E. Fabrication of Ordered Catalytically Active Nanoparticles Derived from Block Copolymer Micelle Templates for Controllable Synthesis of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 2006, 110, 6655-6660.
[40] Podhorska, L.; Delcassian, D.; Goode, A. E.; Agyei, M.; McComb, D. W.; Ryan, M. P.; Dunlop, I. E. Mechanisms of Polymer-Templated Nanoparticle Synthesis: Contrasting ZnS and Au. Langmuir, 2016, 32, 9216-9222.
[41] Seo, E.; Ko, S. J.; Min, S. H.; Kim, J. Y.; Kim, B. S. Plasmonic Transition Via Interparticle Coupling of Au@ Ag Core–Shell Nanostructures Sheathed in Double Hydrophilic Block Copolymer for High-Performance Polymer Solar Cell. Chemistry of Materials, 2015, 27, 4789-4798.
[42] Sasidharan, M.; Gunawardhana, N.; Luitel, H. N.; Yokoi, T.; Inoue, M.; Yusa, S. i.; Watari, T.; Yoshio, M.; Tatsumi, T.; Nakashima, K. Novel LaBO3 Hollow Nanospheres of Size 34±2 nm Templated by Polymeric Micelles. Journal of Colloid and Interface Science, 2012, 370, 51-57.
[43] Pang, X.; Zhao, L.; Han, W.; Xin, X.; Lin, Z. A General and Robust Strategy for the Synthesis of Nearly Monodisperse Colloidal Nanocrystals. Nature Nanotechnology, 2013, 8, 426-431.
[44] Hou, S.; Guo, Y.; Tang, Y.; Quan, Q. Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. ACS Applied Materials & Interfaces, 2017, 9, 18417-18422.
[45] Han, H.; Jeong, B.; Park, T. H.; Cha, W.; Cho, S. M.; Kim, Y.; Kim, H. H.; Kim, D.; Ryu, D. Y.; Choi, W. K. Highly Photoluminescent and Environmentally Stable Perovskite Nanocrystals Templated in Thin Self‐Assembled Block Copolymer Films. Advanced Functional Materials, 2019, 29, 1808193.
[46] Pan, S.; Chen, Y.; Wang, Z.; Harn, Y. W.; Yu, J.; Wang, A.; Smith, M. J.; Li, Z.; Tsukruk, V. V.; Peng, J.; Lin, Z. Strongly-Ligated Perovskite Quantum Dots with Precisely Controlled Dimensions and Architectures for White Light-Emitting Diodes. Nano Energy, 2020, 77.
[47] Hintermayr, V. A.; Lampe, C.; Low, M.; Roemer, J.; Vanderlinden, W.; Gramlich, M.; Bohm, A. X.; Sattler, C.; Nickel, B.; Lohmuller, T.; Urban, A. S. Polymer Nanoreactors Shield Perovskite Nanocrystals from Degradation. Nano Lett, 2019, 19, 4928-4933.
[48] Greiner, M. G.; Singldinger, A.; Henke, N. A.; Lampe, C.; Leo, U.; Gramlich, M.; Urban, A. S. Energy Transfer in Stability-Optimized Perovskite Nanocrystals. Nano Lett, 2022, 22, 6709-6715.
[49] Nah, Y.; Jang, D.; Kim, D. H. Block Copolymer Micelles Enable Facile Synthesis of Organic-Inorganic Perovskite Nanostructures with Tailored Architecture. Chem Commun (Camb), 2021, 57, 1879-1882.
[50] Liou, J. Y.; Sun, Y. S. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films. Polymers (Basel), 2018, 10.
[51] Septani, C. M.; Shih, O.; Yeh, Y. Q.; Sun, Y. S. Structural Evolution of a Polystyrene-Block-Poly(Ethylene Oxide) Block Copolymer in Tetrahydrofuran/Water Cosolvents. Langmuir, 2022, 38, 5987-5995.
[52] Liou, J. Y.; Sun, Y. S. Monolayers of Diblock Copolymer Micelles by Spin-Coating from O-Xylene on SiOX/Si Studied in Real and Reciprocal Space. Macromolecules, 2012, 45, 1963-1971.
[53] Pedersen, J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. Journal of Applied Crystallography, 2000, 33, 637-640.
[54] Guinier, A.; Fournet, G.; Walker, C. B.; Vineyard, G. H., Small‐Angle Scattering of X‐Rays. 1956, American Institute of Physics.
[55] Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. Journal of Applied Crystallography, 1995, 28, 717-728.
[56] Beaucage, G. Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. Journal of Applied Crystallography, 1996, 29, 134-146.
[57] Hammouda, B. Analysis of the Beaucage Model. Journal of Applied Crystallography, 2010, 43, 1474-1478.
[58] Jeong, J. W.; Park, W. I.; Kim, M. J.; Ross, C. A.; Jung, Y. S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-Vinylpyridine-B-Dimethylsiloxane) Block Copolymer. Nano Lett, 2011, 11, 4095-101.
[59] Cui, L.; Wang, H.; Ding, Y.; Han, Y. Tunable Ordered Droplets Induced by Convection in Phase-Separating P2VP/PS Blend Film. Polymer, 2004, 45, 8139-8146.
[60] Pereira, V. J.; Matos, R. L.; Cardoso, S. G.; Soares, R. O.; Santana, G. L.; Costa, G. M. N.; Vieira de Melo, S. A. B. A New Approach to Select Solvents and Operating Conditions for Supercritical Antisolvent Precipitation Processes by Using Solubility Parameter and Group Contribution Methods. The Journal of Supercritical Fluids, 2013, 81, 128-146.
[61] Barton, A. F., Crc Handbook of Solubility Parameters and Other Cohesion Parameters. 2017: Routledge.
[62] Babaei, A.; Albero-Blanquer, L.; Igual-Muñoz, A. M.; Pérez-Del-Rey, D.; Sessolo, M.; Bolink, H. J.; Tadmouri, R. Hansen Theory Applied to the Identification of Nonhazardous Solvents for Hybrid Perovskite Thin-Films Processing. Polyhedron, 2018, 147, 9-14.
[63] Manet, S.; Lecchi, A.; Impéror-Clerc, M.; Zholobenko, V.; Durand, D.; Oliveira, C. L.; Pedersen, J. S.; Grillo, I.; Meneau, F.; Rochas, C. Structure of Micelles of a Nonionic Block Copolymer Determined by Sans and Saxs. The Journal of Physical Chemistry B, 2011, 115, 11318-11329.
[64] Akiba, I.; Sakurai, K. Characterizing Block-Copolymer Micelles Used in Nanomedicines Via Solution Static Scattering Techniques. Polymer Journal, 2021, 53, 951-973.
[65] Liou, J. Y.; Sun, Y. S. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films. Polymers, 2018, 10, 597.
[66] Li, Y. C.; Chen, K. B.; Chen, H. L.; Hsu, C. S.; Tsao, C. S.; Chen, J. H.; Chen, S. A. Fractal Aggregates of Conjugated Polymer in Solution State. Langmuir, 2006, 22, 11009-11015.
[67] Rahman, M. H.; Chen, C. Y.; Liao, S. C.; Chen, H. L.; Tsao, C. S.; Chen, J. H.; Liao, J. L.; Ivanov, V. A.; Chen, S. A. Segmental Alignment in the Aggregate Domains of Poly (9, 9-Dioctylfluorene) in Semidilute Solution. Macromolecules, 2007, 40, 6572-6578.
[68] Chevalier, Y.; Bolzinger, M. A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 23-34.
[69] Ye, X.; Li, Z. W.; Sun, Z. Y.; Khomami, B. Template-Free Bottom-up Method for Fabricating Diblock Copolymer Patchy Particles. Acs Nano, 2016, 10, 5199-5203.
[70] Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. The Journal of Physical Chemistry Letters, 2016, 7, 1368-1373.
[71] Radicchi, E.; Mosconi, E.; Elisei, F.; Nunzi, F.; De Angelis, F. Understanding the Solution Chemistry of Lead Halide Perovskites Precursors. ACS Applied Energy Materials, 2019, 2, 3400-3409.
[72] Liu, X.; Xu, Z.; Cole, J. M. Molecular Design of Uv–Vis Absorption and Emission Properties in Organic Fluorophores: Toward Larger Bathochromic Shifts, Enhanced Molar Extinction Coefficients, and Greater Stokes Shifts. The Journal of Physical Chemistry C, 2013, 117, 16584-16595.
[73] Hintermayr, V. A.; Lampe, C.; Löw, M.; Roemer, J.; Vanderlinden, W.; Gramlich, M.; Böhm, A. X.; Sattler, C.; Nickel, B.; Lohmüller, T. Polymer Nanoreactors Shield Perovskite Nanocrystals from Degradation. Nano Letters, 2019, 19, 4928-4933.
[74] Li, C.; Chen, Y.; Liu, F.; Liu, K.; Li, X.; Zhang, X.; Zhang, H.; Shi, Z.; Chen, W.; Ahmed, I. Highly Luminescent and Patternable Block Copolymer Templated 3D Perovskite Films. Advanced Materials Technologies, 2021, 6, 2001209.
[75] Nah, Y.; Jang, D.; Kim, D. H. Block Copolymer Micelles Enable Facile Synthesis of Organic–Inorganic Perovskite Nanostructures with Tailored Architecture. Chemical Communications, 2021, 57, 1879-1882.
[76] Kim, M.; Kim, J.; Bang, J.; Jang, Y. J.; Park, J.; Kim, D. H. Simultaneously Achieving Room-Temperature Circularly Polarized Luminescence and High Stability in Chiral Perovskite Nanocrystals Via Block Copolymer Micellar Nanoreactors. Journal of Materials Chemistry A, 2023, 11, 12876-12884.
校內:2026-07-23公開