簡易檢索 / 詳目顯示

研究生: 周奕宏
Chou, Yi-Hung
論文名稱: 以DCT係數搭配SPIHT的有效醫學影像壓縮演算法
An Efficient Medical Image Compression Based on DCT Coefficients with SPIHT Algorithm
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 43
中文關鍵詞: 醫學影像影像壓縮離散餘弦轉換SPIHT
外文關鍵詞: Medical image, Image compression, DCT, SPIHT
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文最主要的目的是要找出一個可以節省時間且增進壓縮率的醫學影像壓縮方法。離散小波轉換是一種常見的轉換方法,但是它所花費的時間複雜度很高。為了改善時間複雜度,我們使用低複雜度的離散餘弦轉換取代小波轉換,並且重新排列離散餘弦轉換後的係數來達到空間導向的樹狀結構。由於和小波轉換一樣擁有空間的對應關係,我們可以把它應用在以小波為基礎的壓縮演算法上,如SPIHT。我們使用不同大小的離散餘弦轉換區塊來找出最好的結果。實驗結果顯示,在相同的壓縮率下,本篇論文提出來的演算法在較大的區塊上有比較好的重建影像視覺效果。在時間方面,不管是何種醫學影像,離散餘弦轉換都比離散小波轉換來的快速。

    Medical images are a special classification in their dark background, directional and smooth properties. For efficiency of compressing these images, we propose a compression algorithm based on discrete cosine transform (DCT) with SPIHT. The discrete wavelet transform (DWT) is a useful transform method, but the cost of computational complexity is very high. In order to decrease the computational complexity, we use the DCT instead of DWT. We reorder the DCT coefficients to follow the feature of spatial orientation tree. Therefore, we can use the DWT-based compression method such as SPIHT (Set partitioning in hierarchical trees) to obtain the same compression performance. Simulation results reveal that the proposed method employing a large-size of DCT blocks improves the quality of the reconstructed medical images in terms of PSNR over the conventional SPIHT at the same bit-rate. In the computational time, the DCT is faster than DWT in different types of medical images.

    Abstract ii List of Tables v List of Figures vi Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 DCT 3 2.1.1 Frequency Domain 3 2.1.2 Two Dimension DCT 4 2.2 SPIHT 6 2.2.1 Set Partitioning Sorting Algorithm 7 2.2.2 Spational Orientation Trees 8 2.2.3 SPIHT Coding 10 Chapter 3 Proposed Algorithm 12 3.1 Reordering Method1 for DCT Coefficients 13 3.2 Reordering Method1 for DCT Coefficients 16 3.3 DCT block-size with SPIHT Algorithm 18 3.4 The Preprocessing Method 20 Chapter 4 Experiment Results 21 Chapter 5 Conclusions 35 Reference 36 Appendix A 38 Appendix B 41

    [1] Tahar Brahimi, Ali Melit and Fouad Khelifi, “An improved SPIHT algorithm for lossless image coding,” Digital Signal Processing, vol. 19, pp. 220-228, March 2009.
    [2] M. J. Weinberger, G. Seroussi and G. Sapiro, “The loco-i lossless image compression algorithm: principles and standardization into jpeg-ls,” IEEE Transaction on Image Processing, vol. 9, pp. 1309-1324, August 2000.
    [3] R. Sudhakar, Ms. R. Karthiga and S. Jayaraman, “Image Compression using Coding of Wavelet Coefficients - A Survey,” ICGST International Journal on Graphics, Vision and Image Processing, vol. 5, pp. 25-38, June 2005.
    [4] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-complexity image coding with a set-partitioning embedded block coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, pp. 1219-1235, November 2004.
    [5] M. Unser and T. Blu, “Mathematical properties of the JPEG2000 wavelet filters,” IEEE Transactions on Image Processing, vol. 12, pp. 1080-1090, September 2003.
    [6] H. L. Li, G. H. Liu, and Z. Zhang, “Optimization of integer wavelet transforms based on difference correlation structures,” IEEE Transactions on Image Processing, vol. 14, pp. 1831-1847, November 2005.
    [7] T. Acharya and P. S. Tsai, “JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architecture”, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
    [8] Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243-250, June 1996.
    [9] Yao Tien Chen and Din Chang Tseng, “Wavelet-based medical image compression with adaptive prediction,” Computerized Medical Imaging and Graphics, vol. 31, pp. 1-8, January 2007.
    [10] S. Singh, V. Kumar and H. K. Verma, “DWT–DCT hybrid scheme for medical image compression,” Journal of Medical Engineering & Technology, vol. 31, pp. 109-122, March/April 2007.
    [11] M. A. Ansari, R. S. Anand, “Context based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm,” Advances in Engineering Software, vol. 40, pp. 487-496, 2009.
    [12] Wen Chien Yan, Yen Yu Chen and Shen Chuan Tai, “Compressing discrete cosine transform coefficients by modified set partitioning in hierarchical trees,” Journal of Electronic Imaging, vol. 14, pp. 043003, Oct 2005.
    [13] Han Sae Song and Nam Ik Cho, “DCT-Based Embedded Image Compression With a New Coefficient Sorting Method,” IEEE Signal Processing Letters, vol. 16, pp. 410-413, May 2009.
    [14] L. Junqiang and X. Zhuang, “Embedded image compression using DCT based subband decomposition and SLCCA data organization,” IEEE Workshop Multimedia Signal Processing, pp. 81-84, 2002.
    [15] D. Zhao, W. Gao and Y. K. Chan, “Morphological representation of DCT coefficients for image compression,” IEEE Trans. Circuits Syst Video Technol., vol. 12, pp. 819-823, 2002.
    [16] Y. G. Wu, “GA-based DCT quantisation table design procedure for medical images,” Image Signal Process, vol. 151, pp. 353-359, October 2004.
    [17] Yen Yu Chen, “Medical image compression using DCT-based subband decomposition and modified SPIHT data organization," International Journal of Medical Informatics, vol. 76, pp. 717-725, October 2007.
    [18] J. M. Shapiro, “Embedded image coding using zerotree of wavelet coefficients,”IEEE Transactions on Signal Processing, vol. 41, pp. 3445-3462, December 1993.
    [19] S. G. Mallat, “A wavelet tour of signal processing,” Academic Press, San Diego, 1999.
    [20] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform,” IEEE Transactions on Image Processing, vol. 1, pp. 205-220, 1992.

    無法下載圖示 校內:2015-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE