簡易檢索 / 詳目顯示

研究生: 林聖翰
Lin, Sheng-Han
論文名稱: 臺灣區域餘震產生率與地震規模、震源深度以及地下熱流關係之研究
Relationship Between Aftershock Productivities and Earthquake Magnitude, Focal Depth and Heat Flow in Taiwan
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: 餘震序列K值熱流
外文關鍵詞: Aftershock sequence, K value, Heat flow
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位於板塊交界帶,聚合隱沒作用使地震頻繁且廣佈於不同深度範圍,地震資料豐富且完整,利於研究地震序列的特性。從地震目錄中可發現即使震源深度或地震規模相近的兩次地震,其餘震序列中的地震數量卻可相差達數倍之譜,故探尋餘震序列活動之特性為本研究首要之務。
    本研究透過中央氣象局地震目錄中7.0≧M≧5.5之主震,對該主震之餘震序列進行臺灣各地區餘震產生率(K值)的分析研究與探討。K值可由Omori-Utsu Law:n(t) = K/(c+t)^p求得,將全台共119個7.0≧M≧5.5之餘震序列逐一計算出各序列K值後,即可分析比較K值與地震規模的關係、K值與震源深度的關係、地下熱流對K值的影響,並進行臺灣與美國加州地震序列特性之比較。研究最後發現K值並不會隨時間有明顯的變化,亦即每個地震序列皆可用單一個K值去描述餘震的產生率,且發現相同深度區間內之K值有隨地震規模增加而遞增之趨勢,而相同規模區間內之K值有隨地震深度增加而遞減之趨勢,且遞減率在10-20km之間有明顯轉折,此現象與地體構造之脆韌性分布有一致性。再考量地下熱流之影響,可見中央山脈與海岸山脈海拔較高處有較大的熱流值,使得此高熱流區之地溫梯度增加,地震數量因地層韌性增加而銳減,從研究中發現特定發生於高熱流區之餘震序列,其K值都有偏低之趨勢,此一趨勢與美國加州之餘震序列特性相似。

    Taiwan is located at plate boundary where earthquakes are so frequently and widely distributed at different depth range. The frequent seismicity will help us to study the characteristics of the earthquake sequences. Note that even if two mainshocks are similar by earthquake magnitude or focal depth, the earthquake number of their aftershock sequences can vary up to several times. So, exploring the characteristics of the aftershock sequence activities is the top priority of this study. Our study used 7.0≧M≧5.5 earthquake sequences recorded by Central Weather Bureau (CWB) from 1991 to 2010; and analyzed the aftershock productivities (K value) of each aftershock sequence in Taiwan. K value of aftershock sequence are usually fitted by the Omori-Utsu law:n(t) = K/(c+t)p. After 119 7.0≧M≧5.5 aftershock sequence K value in Taiwan were calculated, we compared the relationship between K value and earthquake magnitude, focal depth, heat flow, and different tectonic blocks, respectively. We found that K value doesn’t change significantly with time; that is each aftershock sequence can be described as its aftershock productivities with a single K value. In addition, we found a trend that K value of the same depth level increases with increasing earthquake magnitude, while K value of the same magnitude decreases with increasing focal depth, and the decreasing rate turns noticeable at 10~20 km depth. This phenomenon can be explained by the brittle-ductile transition zone for a continental lithosphere. We also found that K value is low if the earthquake occurred in high heat flow area.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 4 2.1 臺灣的地質概況 4 2.2 臺灣地區的地震 7 2.2.1 地震成因與應力作用 7 2.2.2 震源深度與地震數量 8 2.2.3 地震規模 10 2.2.4 熱流對地震的影響 11 2.3 地震序列 12 2.3.1 前震與主震 13 2.3.2 餘震 13 2.4 美國南加州的地震序列 14 第三章 研究過程與方法 17 3.1 研究範圍 17 3.2 餘震產生率(K值) 21 3.2.1 K值的定義 21 3.2.2 K值的計算方式 21 3.2.3 K值運算流程 23 3.3 研究過程與方法,以1995.06.25宜蘭地震為例 24 3.4 K值的實際意義 31 第四章 研究結果 32 4.1 臺灣地區7.0≧M≧5.5主震之餘震序列 32 4.2 同深度區間之 K值與地震規模之關係 38 4.3 同規模區間之 K值與震源深度之關係 43 4.4 地下熱流對K值的影響 48 第五章 討論 50 5.1 臺灣地區7.0≧M≧5.5主震之餘震序列類型 50 5.2 同深度區間之 K值與地震規模之關係 52 5.3 同規模區間之 K值與震源深度之關係 54 5.4 地下熱流對K值的影響 56 5.5 美國加州地震序列特性之參照 56 第六章 結論與建議 57 參考文獻 58 附錄 62

    1.國科會海洋學門海洋資料庫,臺灣地區海底地形圖,1999。
    2.黃奇瑜,臺灣的大地構造,台北市:中國地質學會,2002。
    3.鄭世楠,臺灣及鄰近地區大地應力分布的研究,國立中央大學地球物理研究所博士論文,中壢,215頁,1995。
    1.Amitrano, D., Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value, J. Geophys. Res., 108, 2044, doi: 10.1029/2001JB000680, 2003.
    2.Bachman, S. B., Lewis, S. D., and Schweller, W. J., Evolution of a forearc basin, Luzon Central Valley, Philippines. Amer. Assoc. Petrol. Geol., 67, 1143-1162. 1983.
    3.Bowin, C., Lu, R. S., Lee, C. S., and Schouten, H. Plate convergence and accretion in Taiwan-Luzon region. Amer. Assoc. Petrol. Geol.Bull., 62, 1645-1672, 1978
    4.Brace, W. F., and Kohlstedt, D. L., Limits on Lithospheric Stress Imposed by Laboratory Experiment, Journal of geophysical researth, Vol. 85, No. B11, PAGES 6248-6252, November, 1980.
    5.Cao, T., and Aki, K., Seismicity simulation with a mass-spring model and a displacement hardening-softening friction law, Pure and applied geophysics, Volume 122, Number 1, 10-24, doi: 10.1007/BF00879646, 1985.
    6.Chai, B. H. T., Structure and tectonic evolution of Taiwan. Am. J. Sci., 272, 389-422, 1972.
    7.Doser, D. I., and H. Kanamori, Depth of seismicity in the Imperial Valley region (1977-1983) and its relationship to heat flow, crustal structure, and the October 15, 1979, earthquake, J. Geophys. Res., 91, 675-688, 1986.
    8.Felzer, K. R., and Brodsky, E. E., Evidence for dynamic aftershock triggering from earthquake densities, Nature, 441, 735 – 738, 2006.
    9.Felzer, K., Simulated Aftershock Sequences for an M7.8 Earthquake on the Southern San Andreas Fault, Seismological Research Letters, 80, 1, 21-25, 2009.
    10.Gutenberg, B., and Richter, C. F., Frequency and energy of earthquakes. Seismicity of the Earth and Associated Phenomena. Princeton, N.J., 17-19, 1954.
    11.Jahn, B. M., Reinterpretation of geologic evolution of the Coastal Range, east Taiwan, Geol. Soc. Amer. Bull., 83, 241-247. 1972.
    12.Lee, C. R., and Cheng, W. T., Preliminary heat flow measurements in Taiwan: presented at the Fouth Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986.
    13.Lin, C. H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189–201, 2000.
    14.Maggi, A., Jackson, J. A., McKenzie, D., and Priestley, K. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 6, 495-498. 2000.
    15.Omori, F., On the aftershocks of earthquakes, J. Coll. Sci., Imp. Univ Tokyo, 7, 111–200, 1894.
    16.Rolandone, F., Bürgmann, R., and Nadeau, R. M., Time-dependent depth distribution of aftershocks: implications for fault mechanics and crustal rheology, Seism. Res. Lett., 73, 229, 2002.
    17.Rolandone, F., Bürgmann, R., and Nadeau, R. M., The evolution of the seismic-aseismic transition during the earthquake cycle: Constraints from the time-dependent depth distribution of aftershocks, Geophysical Research Letters, 31, 2004.
    18.Sibson, R. H., Earthquakes and rock deformation in crustal fault zone, Ann. Rev. Earth Planet. Sci, 14, 149-175, 1986.
    19.Tsai, Y. –B., Teng, T. –L., Chin, J. –M., and Liu, H. –L., Tectonic implications of the seismicity in the Taiwan region, Memor. Geol. Soc. China, 2, 13-41, 1977.
    20.Utsu, T., A statistical study of the occurrence of aftershocks. Geophysical Magazine. 1961.
    21.Utsu, T., Aftershocks and Earthquake Statistics (É) —Some Parameters Which Characterize an Aftershock Sequence and Their Interrelation, Journal of the Faculty of Science, Hokkaido University, Ser. VÉÉ, 3, 3, 129-195. 1969.
    22.Utsu, Y., Ogata, Y., and Matsu’uara, R. S., The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1–33, 1995.
    23.Wang, K. L., Chung, S. F., Chen, C. H., Shinjo, R., Yang, T. and Chen, C.H., Post-collisional magmatism around northen Taiwan and its relation with opening of the Okinawa Trough. Tectonophycsics, 208, 363-376. 1999.
    24.Yang, W., and Ben-Zion, Y., Observational analysis of correlations between aftershock productivities and regional conditions in the context of a damage rheology model. Geophys. J. Int., 177, 481–490, 2009.
    25.Yeh, Y. H., Barrier, E., Lin, C. H., and Angelier, J., Sterss tensor analysis in the Taiwan area from focal machanisms of earthquakes, Tectonophysics.,200, 267-280, 1991.
    26.Yu, S.-B., Chen, H.-Y. and Kuo, L.-C., Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59. 1997.

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE