| 研究生: |
陳宥全 Chen, Yu-Chuan |
|---|---|
| 論文名稱: |
現地與實驗室評估多孔隙瀝青混凝土績效和工程特性 Field and Laboratory Evaluation of Performance and Engineering Properties of Porous Asphalt Concrete |
| 指導教授: |
陳建旭
Chen, Jian-Shiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 221 |
| 中文關鍵詞: | PAC 、壓實 、堵塞 、孔隙率 、動態三軸 、消散能 、功能性透水績效 、滲透係數 、底碴 |
| 外文關鍵詞: | PAC, compaction, clogging, air void, dynamic triaxial test, dissipated energy, functional permeable performance, permeability coefficient, bottom ash |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔隙瀝青混凝土(PAC) 採用高比例粗粒料之開放級配,孔隙率一般介於15~25%之間。PAC之多孔結構,隨著通車時間與交通載重影響下,孔隙率會因交通壓實與粉塵堵塞作用而降低,影響鋪面之功能性績效。透過計算現地孔隙率與評估PAC功能性變化,利用實驗室模擬現地PAC孔隙率與透水績效間之相關性,作為設計階段之參考依據。本研究進行PAC之配比設計,利用車轍輪跡試驗與動態三軸反覆載重試驗模擬車輛載重所造成之壓實孔隙狀態,以不同壓實程度之PAC試體進行實驗室透水績效試驗與三軸透水試驗,並與現地數據結合,以探討孔隙率與透水績效之影響。此外,為了達到政府「垃圾零掩埋」之目標,本研究將添加焚化爐底碴於PAC試體取代其天然細粒料,進行PAC試體之工程性質分析及可行性評估。
研究結果顯示,導致現地PAC鋪面孔隙率下降之原因,以交通壓實孔隙率佔較高部分之比例,而堵塞孔隙率影響有限;不同瀝青抵抗車轍壓實造成之孔隙變化也不同。PAC孔隙率與現地透水量呈正相關性,與現地噪音量、現地車轍量呈負相關性,抗滑度則無相關性。於現地每產生1mm之車轍量,將造成孔隙率降低1.7%;而現地孔隙率每降低1%,現地透水量Q值會降低103.3(ml/15sec),噪音量提高1dB(A)。透水績效方面,實驗室透水試驗與三軸透水試驗之K值,現地透水試驗之Q值,所對應規範最低門檻之孔隙率分別約為14.4%、14.2%以及17.4%。在底碴之工程性質方面,在馬歇爾穩定值、馬歇爾流度值、飛散損失率與滯留強度指數,均符合規範要求。但因添加底碴取代天然細粒料必須修正瀝青含量,較天然料多約1.16%,造成孔隙率降低,影響鋪面透水績效。
Porous Asphalt Concrete (PAC) is designed with high proportion of coarse aggregate. The air void is generally between 15 to 25 percent. The porous structure of the PAC, with the service time and traffic loading under the influence of air void, due to traffic compaction and dust clogging, affects the role of reduced functional performance of the pavement. The use of laboratory simulation to calculate the present air void, the evaluation of the PAC functional obsolescence and the correlation between the permeable performance bases are used as a reference for the PAC pavement design. In this study, the PAC of the mix design is analyzed. The wheel tracking test and the dynamic triaxial repeated load test are applied. These tests simulate the vehicle load compaction caused by air void of PAC specimens. Furthermore, different levels of compaction performance test, triaxial laboratory permeability test and field data to explore the performance of air void and water permeability are performed. Moreover, in order to achieve the goal of the government "Zero Garbage Landfill", this study will add to the incinerator bottom ash. This will be done to replace the natural fine aggregate of PAC specimens. And also this will allow continuing the analysis and feasibility assessment of the engineering properties of PAC specimens.
The results of the study show that the cause of the field PAC pavement air void decreased. The traffic compaction accounted is higher in proportion than dust clogging. The PAC air void and field flooding was a positive correlation. A negative correlation with the quantity of noise and rutting amount has been present, however no sliding degree of correlation has been shown. The field produces 1mm of the rut, this will cause a reduction of 1.7% of air void. A field air void for every 1% reduction in permeable amount of Q value will reduce 103.3 (ml/15sec), the amount of noise to improve 1dB (A). The pervious performance, the laboratory permeability test and triaxial permeability test show the value of K. The Q value of in situ permeability test corresponds to the air void of the specification of the minimum threshold of about 14.4%, 14.2% and 17.4% respectively. In the engineering properties of bottom ash, the Marshall stability, Marshall flow value, scattering loss rate and the residual strength index are consistent with regulatory requirements. Although by adding the end of ballast to replace the natural fine aggregate, asphalt content needs to be amended. A more natural material of about 1.16%, results in air void. This reduces the impact of pavement permeable performance.
參考文獻
中華民國行政院環境保護署 (2010),http://www.epa.gov.tw/,2010年7月20日瀏覽。
日本道路協會 (1999) 排水性鋪裝技術指針(案),日本。
日本道路協會 (1999) 鋪裝試驗法便覽,日本。
行政院公共工程委員會(2010),公共工程施工綱要規範, 第02797 章,「排水性改質瀝青混凝土鋪面」,台北
陳淮松 (1980) 「瀝青混凝土土路面工程」,pp.211-214,科技圖書公司,台北。
劉韋廷 (1999) 「瀝青混凝土添加焚化爐底碴與回收料之工程性質」,國立成功大學土木工程研究所碩士論文,台南。
蔡攀鰲 (2004)「瀝青混凝土」三民書局,台北。
Alvarez, A.E., Martin, A. E. and Estakhri, C. (2008) “Drainability of Permeable Friction Course Mixtures,” Journal of Materials in Civil Engineering, vol. 22, pp. 556-564.
American Association of State Highway and Transportation Officials(1993). AASHTO Guide for Design of Pavement Structures, Washington, D.C.
ASTM D 7064M (2008). Standard Practice for Open-Graded Friction Course (OGFC) Mix Design, West Conshohocken, PA.
ASTM E 274M (2011). Standard Test Methods for Skid Resistance of Paved Surfaces Using a Full-Scale Tire, West Conshohocken, PA.
ASTM E 303 (2008). Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester, West Conshohocken, PA.
Barksdale, R.D. (1971). “Compressive Stress Pulse Times in Flexable Pavements for Use in Dynamic Testing,” Highway Research Record, No.345, pp. 32-44.
Berthelot, C., Anthony, A., Wandzura C. and Marjerison, B. (2010). “Triaxial Frequency Sweep Characterization of Asphalt-Aggregate Adhesion in Saskatchewan Asphaltic Mixes,” Journal of Transportation Engineering, Vol. 136, No. 2, pp. 158-164.
Bhasin, A., and Little, D.N. (2006). “Characterizing Surface Properties of Aggregates Used in Hot Mix Asphalt,” Final Report No. ICAR 505-2, Texas Transportation Institute, College Station, 41 pages.
Blackburn, R. R. and Gilbert, D. T. (1995). “Photographic Enforcement of Traffic Laws,” National Cooperative Highway Research Program Synthesis 219, Transportation Research Board, National Academy Press.
Brown, E.R. and Haddock, J.E. (1997). “A Method to Ensure Stone-on-stone Contact in Stone Matrix Asphalt Paving Mixtures,” Journal of Transportation Research Record, No. 1583, pp.11-18.
Fredlund, D.G.and Morgenstern, N.R. (1977). “Stress State Variables for Unsaturated Soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, pp446-447.
Fwa, T.F., Tan, S.A., Chuai, C.T., and Guwe, Y.K. (2001). “Expedient permeability measurement for porous pavement surface.” International Journal of Pavement Engineering, Vol.2, pp.259-270.
Ghuzlan, K.A. and Carpenter, S.H. (2000). “Energy-Derived, Damage-Based Failure Criterion for Fatigue Test,” Journal of Transportation Research Record, No. 1723, pp. 141-149.
Hanson, D. I. and James, R. S. (2004) “Colorado DOT Tire / Pavement Noise Study,” Colorado Department of Transportation Report, No. CDOT-2004- 5.
Hassan, F. H., AI-Oraimi S., and Taha R. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp. 416-422.
Hveem, R. N. (1942). “Use of the Centrifuge Kerosene Equivalent as Applied to Determine the Requierd Iol Content for Dese Graded Bituminous Mixtures,” Proceedings of the Association of Asphalt Paving Technologists, Vol. 13, pp. 9-40.
Kim, J. R., Drescher, A. and Newcomb, D. E. (1997). “Rate Sensitivity of Asphalt Concrete in Triaxial Compression,” Journal of Materials in Civil Engineering, vol. 9, No. 2, pp. 76-84.
Liao, Y. (2007). “Viscoelastic FE Modeling of Asphalt Pavements and Its Application to U.S. 30 Perpetual Pavement,” Ohio, Ohio University.
Meyer, W.E. and Kummer, H.W. (1962). “Mechanism of Force Transmission Between Tire and Road,” SAE Report 490A, pp.18-26.
Mallick, R.B., Kandhal, P.S., Cooley, L.A. and Watson, D.E. (2000). “Design, Construction and Performance of New Generation Open-Graded Friction Course,” NCAT Report No. 2000-01, National Center for Asphalt Techology.
Maupin, G. W. (2005) “Asphalt Mix Design Method for Permeability,” Transportation Research Board Annual Meeting, Washington D.C. (CD-ROM)
Monismith, C. L. and Tayebali, A. A. (1988) “ Permanent Deformation (Rutting) Considerations in Asphalt Concrete Pavement Section,” Journal of Association of Asphalt Paving, Vol. 57, pp. 414-447.
Muhanna, A. S., Rahman, M. S. and Lambe, P. C. (1998). “Model for Resilient Modulus and Permanent Strain of Subgrade Soils,” Transportation Research Record, Vol. 1619, pp. 85-93.
Ni, F., Ma, X. and Leng Z. (2010) “Performance of Porous Asphalts with Various Additives: Laboratory Assessment,” Possible Presentation and Publication at the Annual Meeting of the Transportation Research Board. (CD-ROM).
Nielsen, C.B., Bendtsen, H., Andersen, B. and Larsen, H.J.E. (2005) “Noise Reducing Pavements in Japan - Study Tour Report ,” Danish Road Institute (DRI), Danish Road Institute Technical Note 331.
Ohkawa, H., Sato, T., and Hokari, K. (1993) “Study on the Estimation of Permeability Coefficient of Drain Asphalt,” Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
Oliver J.W.H. (2009) “Factors Affecting the Correlation of Skid Testing Machines and A Proposed Correlation Framework,” Road and Transport Research, Vol.18, pp.39-48.
Pronk, A.C. (1997). “Comparison of 2 and 4 Point Fatigue Test and Healing in 4 Point Dynamic Bending Test Based on the Dissipated Energy Concept,” Eighth International Conference on Asphalt Pavements, Vol. 2, pp. 987-994.
Price, S., Mehta, Y. and McCarthy, L. M. (2007). “Evaluation and Modeling of Repeated Load Test Data of Asphalt Concrete for Mechanistic-Empirical Pavement Design,” Journal of Materials in Civil Engineering, Vol. 19, No. 11, pp.993-999.
Robert, F. L., Kandhal, P. S., Brown E. R., Lee, D. Y. and Kennedy, T. W. (1991). “Hot Mix Asphalt Materials, Mixture Design and Construction,” NAPA Education Foundation, Maryland.
Rostron, J.P., Roberts, F.L. and Baron, W. (1965). “Density Standards for Field Compaction of Granular Bases and Subbases”, NCHRP Report 176, Transportation Research Board, pp209-212.
Runkle, S. N. and Mahone, D. C. (1980). “Variation in Skid Resistance over Time.” Virginia Highway & Transportation Research Council, pp. 10-13.
Steven, B. (2009). “Friction Testing of Pavement Preservation Treatments: Temperature Corrections and Operator/Machine Variability,” Technical Memorandum: UCPRC-TM-2008-05.
Tan, S. A., Fwa, T. F., and Chai, K. C. (2004). “Drainage Consideration For Porous Asphalt Surface Course Design,” Journal of Transportation Research Record, No. 1868, pp.142-149.
Lou, Y. (2003). “Effect of Pavement Temperature on Frictional Properties of Hot-Mix-Asphalt Pavement Surfaces at the Virginia Smart Road,” Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
Witczak, M.W., Cardoso, S.H. and Kaloush, K. (2000). “Triaxial Strength Test,” NCHRP Project 9-19, Task C. Team Report SPT-MN-2(D).