| 研究生: |
黃丞瑄 Huang, Cheng-Syuan |
|---|---|
| 論文名稱: |
優養化水體周界空氣中微囊藻及其毒素調查方法及風險評估研究 Establishment of Monitoring Methods and Risk Assessment for Microcystis and Microcystins in the Ambient Air near Eutrophic Surface Water Bodies |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 共同指導教授: |
林明彥
Lin, Ming-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | IOM 、BioSampler® 、SJAC 、藻類毒素 、氣懸膠 、酵素免疫蛋白法(ELISA) 、分子生物技術 、暴露風險 |
| 外文關鍵詞: | Aerosol, Microcystis, Microcystins, Air sampler, Risk assessment |
| 相關次數: | 點閱:137 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
農工業發展迅速,大量氮磷等營養鹽排入自然環境中的淡水水體,形成水體優養化現象(Eutrophication),出現使水體中藻類迅速成長形成藻華現象(Algal bloom)。當環境中水體中有藻及其毒素存在,可藉由口攝入、皮膚接觸和口鼻的吸入等途徑進入人體內,有研究顯示,微囊藻毒素對人體的影響程度,由鼻腔吸入較攝入高了十倍,但目前關於藻類氣膠的研究有限。故本研究進行三種不同類型空氣採樣器 – IOM可吸入粉塵採樣器採樣器(IOM inhalable dust sampler)、生物氣膠採樣器(BioSampler®)及蒸氣噴氣膠收集器(Steam-jet aerosol collector, SJAC),採集微囊藻(Microcystis)細胞最佳化流程,並進行chamber實驗進行微囊藻細胞及其毒素之採集效率比較,配合現地採樣,應用分子生物技術(Real time PCR, qPCR)及酵素免疫蛋白法(Enzyme-Linked Immunosorbent Assay, ELISA)進行微囊藻細胞與其毒素之定量,最後以蒐集之相關數據與資訊進行人體健康風險評估。
研究中針對IOM,探討進行長時間採樣對於濾膜上微囊藻細胞基因之影響,結果顯示濾膜上之微囊藻細胞基因經8小時抽氣,並無明顯降解狀況。接著探討長時間採樣對濾膜上溶解態微囊藻DNA影響,高濃度溶解態DNA濃度部分,經8小時抽氣,約有1,000倍的損失;在低濃度溶解態DNA濃度部分,已無法截流在濾膜上。
在BioSampler®部分,為了解決樣品前處理過濾時造成微囊藻基因之損失,進行過濾時幫浦流量及過濾時間(過濾體積多寡)之探討。首先,幫浦流量的控制無法有效減緩過濾所造成之微囊藻基因損失;接著,在微囊藻基因及微囊藻產毒基因,以每片濾膜上過濾3至4 mL收集介質進行前處理,有最佳回收效率分別為40%及50%。為了降低BioSampler®長時間採樣收集液體蒸散之損失,除了使用礦物油做為收集介質外,也使用以ASM培養基為主體,加入不同比例甘油及DMSO做為收集介質進行探討,實驗結果考量微囊藻細胞之回收率及收集介質後續微囊藻毒素樣品分析之困難度,選擇以ASM培養基做為收集介質。
以chamber實驗進行各空氣採樣器對於微囊藻細胞及其毒素氣膠採集效率之探討,以APS量測不同擾動水面方式之氣膠生成濃度後,以噴柱式作為氣膠生成之方式。在微囊藻細胞採集濃度部分,IOM採集效率最高,濃度為 2.4*10^4 cells/m^3,而BioSampler®次之,濃度為1.9*10^4 cells/m^3;在微囊藻毒素採集濃度部分,BioSampler®採集效率最高,濃度為3.2 μg/m^3,而SJAC次之,濃度為3.0 μg/m^3。
於台南葫蘆埤及菲律賓貝湖進行現地採樣。於葫蘆埤的採樣,三種空氣採樣器於微囊藻細胞之分析結果皆低於偵測極限,在微囊藻毒素部分IOM及BioSampler®,分別測得0.08 ng/m^3及1.078 ng/m^3;於菲律賓貝湖的採樣,在微囊藻細胞的部分,測得約10^2至10^3 cells/m^3,微囊藻毒素約為0.04 ng/m^3。以葫蘆埤測得之最高微囊藻毒素濃度進行於葫蘆埤工作者之風險最大進行吸入性鼻腔病灶評估,危害指標(HI)值為0.124小於1,預期將不會造成顯著損害。
Inhalation is a potential pathway for human exposure to cyanotoxins. However, research about measurement of microcystin in ambient air and inhalation exposure is limited. Therefore, this study is aimed to establish the sampling and analytical methods for microcystins in air and to estimate the exposure and health risk for the people living/working near studied lakes/reservoirs with cyanobacteria issues. Three different types of air samplers, including inhalable dust sampler (IOM), BioSampler® and steam-jet aerosol collector (SJAC), were chosen and studied to optimize sample collection of Microcystis and microcystins. Quantitative PCR (qPCR) was used to quantify the genes for Microcystis, and enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry/ mass spectrometry (LC/MS/MS) were used to quantify microcystins. Field sampling were condudcted and the data were further used to determine the inhalation exposure of micricystins and to assess the human health risk.
For IOM, the results show that cell-bound 16S rRNA gene and mcyB gene were not significantly degraded in the sampling time of 8 hrs. However, for the extra-cellular DNA on the filtrate, only less than 0.1% of 16S rRNA gene and mcyB gene remained after 8 hrs of sampling. For BioSampler®, flow of pump is not the reason for the loss of genes in the process of pretreatment. The optimal recovery efficiency was 40% and 50% for 16S rRNA gene and mcyB gene respectively. Among the three media tested to improve collection efficiency, ASM was chosen, due primarily due to collection efficiency and ease to analyze.
Among the field sampling activities, the highest concentration of microcystins detected was collected with BioSampler® in Hulupi (HLP) pond sampling. The data were then used to evaluate the highest risk of inhalion for the people workng near HLP. The hazard index (HI) was less 1, 0.124, and no significant risk was expected.
ACGIH. Guidelines for the assessment of bioaerosols in the indoor environment. American Conference of Governmental Industrial Hygienists. (1989)
Agranovski, I.E., Agranovski, V., Reponen, T., Willeke, K. and Grinshpun, S.A. Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric environment, 36(5): 889-898. (2002)
Arya, M., Shergill, I.S., Williamson, M., Gommersall, L., Arya, N and Patel, H.R.H. Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 5(2): 209-219. (2005)
Backer, L.C., Carmichael, W., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., Johnson, T.B., Nierenberg, K., Hill, V.R., Kieszak, S.M. and Cheng, Y.S. Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Marine Drugs, 6(2): 389-406. (2008)
Backer, L.C., McNeel, S.V., Barber, T., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., Johnson, T.B., Nierenberg, K., Aubel, M., LePrell, R., Chapman, A., Foss, A., Corum, S., Hill, V.R., Kieszak, S.M. and Cheng, Y.S. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon. 55(5): 909-921. (2010)
Benson, J.M., Hutt, J.A., Rein, K., Boggs, S.E., Barr, E.B. and Fleming, L.E. The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45(6): 691-698. (2005)
Berg, K., Carmichael, W.W., Skulberg, O.M., Benestad, C. and Underdal, B. Investigation of a toxic water-bloom of microcystis-aeruginosa (cyanophyceae) in lake-akersvatn, Norway. Hydrobiologia, 144(2):97-103. (1987)
Bishop C.T., Anet E.F.L. and Gorham P.R. Isolation and Identification of the Fast-Death Factor in Microcystis Aeruginosa Nrc-1. Canadian Journal of Biochemistry and Physiology, 37(3): 453-471. (1959)
Blanchard, D.C. and Woodcock, A.H. Bubble formation and modification in the sea and its meteorological significance. Tellus, 9(2): 145-158. (1957)
Blanchard, D.C. and Syzdek, L.D. Concentration of bacteria in jet drops from bursting bubbles. Journal of Geophysical Research, 77(27): 5087. (1972)
Boopathi T. and Ki J.S. Impact of Environmental Factors on the Regulation of Cyanotoxin Production. Toxins, 6: 1951-1978. (2014)
Bourke, A.T.C. and Hawes, R.B. Fresh-water cyanobacteria (blue-green-algae) and human health. Medical Journal of Australia, 1(11): 491-492. (1983)
Brookes J.D and Carey C.C. Resilience to Blooms. Science, 334(6052), 46-47. (2011)
Byth S. Palm Island mystery disease. Medical Journal of Australia, 2(1): 40-42. (1980)
Carey C.C., Ibelings B.W., Hoffmann E.P., Hamilton D.P. and Brookes J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46: 1394-1407. (2012)
Carmichael W.W., Eschedor, J.T, Patterson, G.M.L. and Moore, R.E. toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium nodularia-spumigena mertens emend l575 from new-zealand. Applied and Environmental Microbiology, 54(9): 2257-2263. (1988)
Carmichael W.W., Azevedo M.F.O., An J.S., Molica R.J.R., Jochimsen E.M., Lau S., Rinehart K.L., Shaw G.R., and Eagelsham G.K. Human Fatalities from Cyanobacteria: Chemical and Biological Evidence for Cyanotoxins. Environmental Health Perspectives, 109: 663-668. (2001)
Chen H, Burke E, and Prepas E.E. Cyanobacterial toxins in fresh waters. In: Nriagu JO, editor. Encyclopedia of environmental health. Amsterdam: Elsevier; 860–71. (2011)
Cheng, Y.S., Zhou, Y., Irvin, C.M., Kirkpatrick, B. and Backer, L.C. Characterization of aerosols containing microcystin. Marine drugs, 5(4):136-150. (2007)
Chiswell, R.K., Shaw, G.R., Eaglesham, G., Smith, M.J., Norris, R.L., Seawright, A.A. and Moore, M.R. Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: Effect of pH, temperature, and sunlight on decomposition. Environmental toxicology, 14(1): 155-161. (1999)
Codd G.A., Bell S.G., Kaya K., Ward C.J., Beattie K.A., Metcalf J.S. Cyanobacterial toxins, exposure routes and human health. European Journal of Phycology, 34:405-415. (1999)
Codd G.A., Morrison L.F. and Metcalf J.S. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology, 203: 264-272. (2005)
CRC. Blue Green Algae: A Guide. (2004)
Dawson R. M. The Toxicology of Microcystins. Defence Science and Technology Organisation. (1997)
Duy T.N., Lam P.K.S., Shaw G.R., and Connell D.W. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Reviews of Environmental Contamination and Toxicology, 163: 113-186. (2000)
Engvall E. and Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 8(9): 871-874. (1971)
Fleming, L.E., Backer, L.C., and Baden, D.G. Overview of aerosolized Florida red tide toxins: Exposures and effects. Environmental Health Perspectives, 113(5):618-620. (2005)
Fleming, L.E., Kirkpatrick, B., Backer, L.C., Beam, J.A., Wanner, A., Reich, A., Zaias, J., Cheng, Y.S., Pierce, R., Naar, J., Abraham, W.M. and Baden, D.G. Aerosolized red-tide toxins (brevetoxins) and asthma. Chest, 131(1): 187-194. (2007)
Fleming, L.E., Bean, J.A., Kirkpatrick, B., Cheng, Y.S., Pierce, R., Naar, J., Nierenberg, K., Backer, L.C., Wanner, A., Reich, A., Zhou, Y., Watkins, S., Henry, M., Zaias, J., Abraham, W.M., Benson, J., Cassedy, A., Hollenbeck, J., Kirkpatrick, G., Clarke, T. and Baden, D.G. Exposure and Effect Assessment of Aerosolized Red Tide Toxins (Brevetoxins) and Asthma. Environmental health perspectives, 117(7): 1095-1100. (2009)
Funari E. and Testai E. Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38: 97-125. (2008)
Genitsaris, S., Moustaka-Gouni, M. and Kormas, K.A. Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs. Aquatic Microbial Ecology, 62(2): 139-U51. (2011)
Greenburg, L. and Smith, G.W. A new instrument for sampling aerial dust. American industrial hygiene association journal, 53(4): A186. (1992)
Griffiths D.J. and Saker M.L. The Palm Island mystery disease 20 years on: A review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology, 18(2): 78-93. (2003)
Grinshpun, S.A., Willeke, K., Ulevicius, V., Juozaitis, A., Terzieva, S., Donnelly, J., Stelma, G.N. and Brenner, K.P. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Science Technology, 26(4): 326-342. (1997)
Haider, S., Naithani, V., Viswanathan, P.N. and Kakkar, P. Cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1): 1-21. (2003)
Harada K., Ogawa K., Kimura Y., Murata H. and Suzuki M. Microcystins from Anabaena flos-aquae NRC 525-17. Chemical Research in Toxicology, 4: 535-540. (1991)
Hawkins, P.R., Runnegar M.T.C., Jackson, A.R.B. and Falconer, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green-alga) cylindrospermopsis-raciborskii (woloszynska) seenaya and subba raju isolated from a domestic water-supply reservoir. Applied and environmental microbiology, 50(5):1292-1295. (1985)
Hu, Q., Westerhoff, P. and Vermaas, W. Removal of nitrate from groundwater by cyanobacteria: Quantitative assessment of factors influencing nitrate uptake. Applied and Environmental Microbiology, 66(1): 133-139. (2000)
Hummert C., Dahlmann J., Reichelt M., and Luckas M. Analytical techniques for monitoring harmful cyanobacteria in lakes. Lakes and Reservoirs: Research and Management, 6: 159-168. (2001)
Innis M.A., and Gelfand D.H. Optimization of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocol. San Diego: Academic Press, pp. 3-12. (1990)
Ishibashi, T., Shinogami, M., Ishimoto, S., Nibu, K., Suzuki, M. and Kaga, K. Identification of dual specificity phosphatases induced by olfactory bulbectomy in rat olfactory neuroepithelium. Brain Research, 902(2): 205-211. (2001)
Jancula, D. and Marsalek, B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere, 85(9):1415-1422. (2011)
Kaebernick, M. and Neilan, B.A. Ecological and molecular investigations of cyanotoxin production. Fems Microbiology Ecology, 35(1): 1-9. (2001)
Karlin S, and Mrazek J. What drives codon choices in human genes. Journal of Molecular Biology, 262(4): 459-472. (1996)
Kenny, L.C., Stancliffe, J.D., Crook, B., Stagg, S., Griffiths, W.D., Stewart, I.W. and Futter, S.J. The adaptation of existing personal inhalable aerosol samplers for bioaerosol sampling. American Industrial Hygiene Association Journal, 59(12): 831-841. (1998)
Khlystov, A., Wyers, G.P. and Slanina, J. The steam-jet aerosol collector. Atmospheric Environment, 29(17): 2229-2234. (1995)
Khlystov A.Y., Weijers E.P., Kos G.P.A., van den Bulk W.C.M., Even A., Ten Brink H.M. and Erisman J.W. Characterization of particulate matter in urban air: instrumental development and experimental results. (2000)
Kondo, F., Ikai, Y., Oka, H., Okumura, M., Ishikawa, N., Harada, K., Matsuura, K., Murata, H. and Suzuki, M. Formation, Characterization, and Toxicity of the Glutathione and Cysteine Conjugates of Toxic Heptapeptide Microcystins. Chemical Research in Toxicology. 5(5): 591-595. (1992)
Konst, H., Mckercher, P.D., Gorham, P.R., Robertson, A. and Howell, J. Symptoms and pathology produced by toxic microcystis aeruginosa nrc-1 in laboratory and domestic animals. Canadian Journal of Comparative Medicine and Veterinary Science. 29(9):221-228. (1965)
Kroner, C, Boekhoff, I and Breer, H. Phosphatase 2A regulates the responsiveness of olfactory cilia. Biochimica Et Biophysica Acta-Molecular Cell Research, 1312(2): 169-175. (1996)
Lin, X.T., Hsu, N.Y., Wang , J.R., Chen, N.T., Su , H.J. and Lin, M.Y. Development of an efficient viral aerosol collector for higher sampling flow rate. Environmental Science and Pollution Research, 25(4): 3884-3893. (2018)
Lin, X., Willeke, K., Ulevicius, V., Grinshpun, S.A. Effect of sampling time on the collection efficiency of all-glass impingers. American Industrial Hygiene Association Journal, 58(7): 480-488. (1997)
Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S.A. and Trunov, M. 1998. Improved sampling of airborne microorganisms into liquid. Applied Environmental Microbiology, submitted for publication. (1998)
Lin, X., Reponen, T.A., Willeke, K., Grinshpun, S.A., Foarde, K.K. and Ensor, D.S. Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric environment, 33(26): 4291-4298. (1999)
Mackintosh C. and Klumpp S. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett. 277: 137-140. (1990)
Maizels M., and Budde W.L. A LC/MS Method for the Determination of Cyanobacteria Toxins in Water. Analysis Chemistry, 76: 1342-1351. (2004)
Mastrangelo, D., Squitieri, N., Bruni, S., Hadjistilianou, T. and Frezzotti, R. The polymerase chain reaction (PCR) in the routine genetic characterization of retinoblastoma: A tool for the clinical laboratory. Survey of Ophthalmology, 41(4): 331-340. (1997)
Murby, A.L. and Haney, J.F. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia, 32(3): 395-403. (2016)
National Rivers Authority. Toxic blue-green algae. London: National Rivers Authority. (1990)
Neilan, B.A., Saker, M.L., Fastner, J., Torokne, A. and Burns, B.P. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Molecular ecology, 12(1): 133-140. (2003)
Newcombe G, editor. International guidance manual for the management of toxic cyanobacteria. London: IWA Publishing. (2012)
Norris R.L., Eaglesham G.K., Pierens G., Shaw G.R., Smith M.J., Chiswell R.K., Seawright A.A. and Moore M.R. Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environ. Toxicol, 14: 163-165. (1999)
Ohtani, I., Moore, R.E. and Runnegar, M.T.C. Cylindrospermopsin - a potent hepatotoxin from the blue-green-alga cylindrospermopsis-raciborskii. Journal of the American chemical society, 114(20): 7941-7942. (1992)
Philipp, R. and Bates, A.J. Health-risks assessment of dinghy sailing in avon and exposure to cyanobacteria (blue-green-algae). Journal of the Institution of Water and Environmental Management. 6(5): 613-620. (1992)
Puddick J., Prinsep M.R., Wood, S.A., Cary S.C., Hamiton D.P., and Holland P.T. Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica. Toxins, 7: 493-515. (2015)
Pyo D., and Shin H. Extraction and analysis of microcystins RR and LR in cyanobacteria using a cyano cartridge. Journal of Biochemical and Biophysical Methods, 51: 103-109. (2002)
Rao P.V.L., Gupta N., Bhaskar A.S.B., and Jayaraj R. Toxins and bioactive compounds from cyanobacteria and their implications on human health. Journal of Environmental Biology, 3: 215-224. (2002)
Rees S.L., Robinson A.L., Khlystov A., Stanier C.O. and Pandis S.N. Mass balance closure and the federal reference method for PM2.5 in Pittsburgh, Pennsylvania. Atmos Environ, 38(20):3305–3318. (2004)
Rippka R. Isolation and purification of cyanobacteria. Methods in enzymology, 167. 3. (1988)
Rouhiainen L., Sivonen, K., Buikema, W.J., and Haselkorn, R. Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. Journal of bacteriology, 177(20): 6021-6026. (1995)
Schembri M.A., Neilan B.A. and Saint C.P. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology, 16(5): 413-421. (2001)
Slanina J, ten Brink H.M., Otjes R.P., Even A., Jongejan P., Khlystov A.,Waijers-Ijpelaan A. and Hu M. The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): extension and validation of the methodology. Atmos Environ, 35(13):2319–2330. (2001)
Smith C.J. and Osborn A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. Microbiology Ecology, 67(1): 6-20. (2008)
Stewart I., Schluter P., and Shaw G. Cyanobacterial lipopolysaccharides and human health. Review of Environmental Health, 5: 7. (2006)
Thompson A.S., Rhodes J.C. and Pettman I. Natural Environmental Research Council Culture Collection of Algae and Protozoa-Catalogue of Strains; Freshwater Biology Association, Ambleside, UK; p. 22. (1988)
Tsuji, K ., Watanuki, T., Kondo, F., Watanabe, M.F., Suzuki, S., Nakazawa, H., Suzuki, M., Uchida, H. and Harada, K. Stability of microcystins from cyanobacteria Ⅱ. Effect of UV light on decomposition and isomerization. Toxicon. 33(12):1619-1631. (1995)
Turner, P.C., Gammie, A.J., Hollinrake, K. and Codd, G.A. Pneumonia associated with contact with cyanobacteria. British Medical Journal, 300(6737):1440-1441. (1990)
USEPA. Creating a Cyanotoxin Target List for the Unregulated Contaminant Monitoring Rule. (2001)
USEPA. Drinking Water Health Advisory for the Cyanobacterial Microcystin Toxins. (2015a)
Westerhoff P. and Mash H. Dissolved Organic Nitrogen in Drinking Water Supplies: A Rivew. Journal of Water Supply Research and Technology-Aqua, 51:415-448. (2002)
Willeke, K., Lin, X.J. and Grinshpun, S.A. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol science and technology, 28(5): 439-456. (1998)
Whipple G.C. (revised by Fair G.M. and Whipple M.C.) The Microscopy of drinking water. John Wiley and Sons Inc., pp. xix + 586, 19 plates. (1927)
WHO. Management of Cyanobacteria in Drinking-water Supplies: Information for regulators and water suppliers. (2015)
Wimmer K.M.., Strangman W.K., and Wright J.L.C. 7-Deoxy-desulfo-cylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae, 37: 203-206. (2014)
Wood S.A. and Dietrich D.R. Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Environmental Monitoring, 13: 1617-1624. (2011)
Yen H.K., Lin T.F. and Liao P.C. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography- mass spectrometry. Toxicon, 58: 209-218. (2011)
王瀚生及林財富,優養化水體旁空氣中兩種毒性藍綠藻及毒素暴露量評估,國立成功大學環境工程研究所碩士論文 (2018)
李貞慧、吳美惠、張嬉麗、廖福全、黃瑞聰、吳美炷、林彥宏、許惠佳,水公司水庫原水及其淨水場原清水中微囊藻毒之調查研究,第五屆海峽兩岸水質安全技術與管理研討會,澳門,10月28-29日 (2009)
林財富、吳哲宏、顏宏愷,水庫有害藻類及微生物監測應變與檢測技術研究經濟部水利署 (2013)
林財富等,水源產毒藻類與有害微生物監控與管理技術之研發與應用,經濟部水利署 (2010)
洪文宗、翁英明、牟麗娥、黃壬瑰、李秓萍、劉素妙、潘復華、蕭美琪、趙春美、梁淑婷,螢光光度計應用在水庫環境連續監測探討,環保署環境檢驗所,中壢 (2008)
廖寶琦,第十二章-電噴灑離子化質譜法,醫藥基因生物技術教學資源中心主編,蛋白質體學:第139頁-第150頁 (2004b)
環境檢驗所,水中微囊藻毒及節球藻毒篩檢方法-盤式或條式直接競爭型酵素免疫分析法,NIEA E510.50B,行政院環境保護署 (2011)
日本放射線醫學總合研究所及劑量委員會 (1988)
國立台灣大學公共衛生學院健康風險及政策評估中心,台灣一般民眾暴露參數彙編 (2008)
勞動部勞動及職業安全研究所,作業環境生物氣膠監測暨控制技術手冊 (2016)
勞動部勞動條件及就業平等司,工時制度及工作彈性化措施手冊 (2015)
行政院人事行政總處,中華民國一百零八年政府行政機關辦公日曆表 (2019)