簡易檢索 / 詳目顯示

研究生: 徐學德
Hsu, Hsueh-Te
論文名稱: 氟化高分子隔離膜:製備、性質測試與電池效能測試
Fluoropolymer-Based Separator: Preparation, Characterization and Performance in Battery Devices
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 鋁離子電池高分子隔離膜氟化高分子靜電紡絲
外文關鍵詞: Aluminum-ion battery, polymer separator, Fluorinated polymer, electrospinning
相關次數: 點閱:156下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氟化高分子PVdF-co-HFP,分別以鑄膜法以及靜電紡絲技術,製備離子電池之隔離膜。在鑄膜法部分,本研究嘗試以不同比例混合氟化高分子以及離子液體,經由SEM分析表面型態,發現離子液體的添加可增加高分子的孔洞結構;另一方面,在PVdF-co-HFP中添加交聯劑1,3-Diaminopropane(DAP),並以鑄膜法(CF-1、CF-2、CF-3、CF-4)以及靜電紡絲法(NF-1、NF-2、NF-3、NF-4)分別製備出隔離膜,由SEM、FT-IR、TGA、DSC分析隔離膜的物理性質,以及以交流阻抗法測試纖維隔離膜的導離子度。
    由SEM觀察,將PVdF-co-HFP以靜電紡絲法製備成奈米纖維隔離膜,可有效增加孔洞性有助於離子於電池中的移動,在纖維膜浸泡離子液體後,可觀察到離子液體與纖維膜的微相分離。由熱性質分析,可以發現隔離膜再加入交聯劑之後,能夠在熱性質差異不大的情況下隨著交聯劑比例的上升,有效提升隔離膜的機械性質。
    在電化學性質上面,將纖維膜浸泡於溶於乙醇的離子液體的電解液中,隨著交聯劑比例的上升,電解液吸收度的下降;在交聯阻抗分析中,也顯示出交聯劑比例的上升,導離子度下降的趨勢,說明了交聯劑對PVdF-co-HFP高分子纖維膜結構的影響,然而總體來說導離子度比一般氟化高分子在鋰離子電池中低。在與鋁離子電池常用之電解液(AlCl3/[EMIm]Cl=1.3)的相容性上,因氟化高分子隔離膜會有與電解液發生化學反應的疑慮,因此推論,若要以鋰離子電池常用的氟化高分子應用於鋁離子電池,需要對高分子進行表面修飾等,以進一步提升氟化高分子在鋁離子電池的相容性。

    We utilized the fluoro-based polymer, PVdF-co-HFP to prepare the separators for ion batteries by casting-film and electrospinning membrane. In the part of casting-film, we tried to mix the PVdF-co-HFP and ionic liquid with different ratios. According to the SEM analysis, it would be found that the addition of ionic liquid could increase the porous structure; on the other side, we added the cross-linker 1,3-Diaminopropane(DAP) into the solution of polymer, and then prepare the separators by the casting-film and electrospinning membrane. We tested the physical properties of our separators by SEM、FT-IR、TGA、DSC analysis, and the electrochemical properties by AC impedance analysis.
    From the SEM analysis, the electrospinning membrane of PVdF-co-HFP could helpfully increase the mobility since the porous structure. It also could be observed the microphase separation after soaked in the ionic liquid. According to the TGA、DSC analysis, we found that after the addition of cross-linker, the mechanical properties promote with the increasing of the ratio of cross-linker without obvious difference of thermal properties.
    In the electrochemical property analysis, the uptake of electrolyte decreased with the increasing of the ratio of cross-linker after the membrane soaked in the ionic liquid; in the AC impedance analysis, it also shows the same tendency of the ionic conductivity. It explained the influence of the cross-linker for the membrane structure, but the ionic conductivities were still lower than the PVdF-co-HFP
    separators in lithium-ion batteries. As for the compatibility of aluminum-ion battery, there was a concern about the reactivity for the electrolyte which is wildly used in aluminum-ion battery. It is inferred that if we would like to apply our PVdF-co-HFP electrospinning membrane to aluminum-ion batteries, it is necessary to modify the surface structure of polymer in order to improve the compatibility of aluminum-ion battery.

    中文摘要 I Abstract II 致謝 IX 目錄 XI 圖目錄 XIV 表目錄 XVII 第一章、 緒論 1 1.1前言 1 1.2研究背景與文獻回顧 2 1.2.1二次電池發展史 2 1.2.1.1鉛酸電池 2 1.2.1.2鎳鎘電池 2 1.2.1.3鎳氫電池 2 1.2.1.4鋰離子電池 3 1.2.1.5鋰硫電池 4 1.2.1.6鈉/鎂電池 5 1.2.1.7鋰空氣電池 6 1.2.2鋁離子電池 7 1.2.3鋁離子電池之工作原理 10 1.2.3.1正極材料 11 1.2.3.1.1過渡金屬氧化物(VO2、V2O5)材料 11 1.2.3.1.2碳材(graphite) 13 1.2.3.1.3含硫正極材料(Mo6S8、NiS) 15 1.2.3.1.4鋁離子電池正極材料之比較 16 1.2.3.2負極材料 17 1.2.3.3電解質 18 1.2.3.3.1液態有機電解質 19 1.2.3.3.2高分子電解質 21 1.2.3.3.3膠態高分子電解質 22 1.2.3.3.4固態高分子電解質 23 1.2.3.3.5 PVdF-based 高分子電解質 24 1.2.3.4隔離膜 25 1.2.3.5固態電解質界面膜(Solid electrolyte interphase,SEI) 26 1.2.3.6離子液體與在二次電池的應用 27 1.2.4靜電紡絲技術 29 1.2.4.1 靜電紡絲簡介 29 1.2.4.2靜電紡絲原理與裝置 29 1.2.4.3影響靜電紡絲之參數 30 1.2.5交流阻抗分析 35 1.2.6導離子度 37 1.3研究動機與目的 39 第二章、實驗 40 2.1實驗藥品 40 2.2儀器設備 41 2.3實驗方法 42 2.3.1 高分子/離子液體混摻高分子隔離膜 42 2.3.2交聯之高分子隔離膜製備 43 2.3.3鈕扣電池組裝 45 2.3.4鋁離子電池電解液相容性測試 45 2.3.5導離子度分析(Ionic conductivity, σ) 46 2.4儀器鑑定原理及分析 46 2.4.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 46 2.4.2傅立葉轉換紅外線光譜儀(FT-IR) 47 2.4.3熱重量分析(Thermogravimetric analysis, TGA) 47 2.4.4微差式掃描熱卡計(Differential scanning calorimetry, DSC) 48 2.4.5動態熱機械分析儀分析(Dynamic Mechanical Analysis, DMA) 48 2.4.6交流阻抗分析(AC Impedance) 49 第三章、結果與討論 50 3.1高分子隔離膜型態 50 3.1.1高分子/離子液體混摻高分子隔離膜 50 3.1.2交聯之高分子隔離膜 52 3.2 FT-IR (ATR)交聯度分析 56 3.3 TGA熱重分析 58 3.4 DSC熱轉移性質分析 59 3.5 DMA機械拉伸性質分析 61 3.6電解液吸收量(Electrolyte uptake)測試 63 3.7交流阻抗分析導離子度分析 64 3.8鋁離子電池電解液相容性測試 66 第四章、結論 67 第五章、參考文獻 68

    [1] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, M. Weil, Renewable and Sustainable Energy Reviews 2017, 67, 491-506.
    [2] Tarascon, J-M., and Michel Armand. "Issues and challenges facing rechargeable lithium batteries." Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011. 171-179.
    [3] Ruetschi, Paul. "Review on the lead—acid battery science and technology." Journal of Power Sources 1997, 2, 3-120.
    [4] Shukla, A. K., S. Venugopalan, and B. Hariprakash. "Nickel-based rechargeable batteries." Journal of Power Sources 2001, 100, 125-148.
    [5] Mizushima, K., et al. "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density." Materials Research Bulletin 1980, 15, 783-789.
    [6] T. Sasaki, K. Ezawa, S. Harada, Y. Fukasawa, T. Kanai, A. Ikeda, et al., "Lithium ion batteries," Citi Research, 2012
    [7] Goodenough, John B. "Electrochemical energy storage in a sustainable modern society." Energy & Environmental Science 2014, 7, 14-18.
    [8] Manthiram, Arumugam, Yongzhu Fu, and Yu-Sheng Su. "Challenges and prospects of lithium–sulfur batteries." Accounts of chemical research 2012, 46, 1125-1134.
    [9] Peng, Zhenhuan, et al. "Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium–sulfur cathode." Journal of Power Sources 2015, 282, 70-78.
    [10] Barghamadi, Marzieh, Ajay Kapoor, and Cuie Wen. "A review on Li-S batteries as a high efficiency rechargeable lithium battery." Journal of the Electrochemical Society 2013, 160 A1256-A1263.
    [11] Sawicki, Monica, and Leon L. Shaw. "Advances and challenges of sodium ion batteries as post lithium ion batteries." RSC Advances 2015, 5, 53129-53154.
    [12] Shterenberg, Ivgeni, et al. "The challenge of developing rechargeable magnesium batteries." Mrs Bulletin 2014, 39, 453-460.
    [13] Jung, Kyu-Nam, et al. "Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes." Journal of Materials Chemistry A 2016, 4, 14050-14068.
    [14] Zhou, Haoshen, et al. "The development of a new type of rechargeable batteries based on hybrid electrolytes." ChemSusChem 2010, 3, 1009-1019.
    [15] Holleck, Gerhard L., and José Giner. "The Aluminum Electrode in AlCl3‐Alkali‐Halide Melts." Journal of the Electrochemical Society 1972, 119, 1161-1166.
    [16] Koura, N. "A preliminary investigation for an Al/AlCl3-NaCl/FeS2 secondary cell." Journal of The Electrochemical Society 1980, 127, 1529-1531.
    [17] Elia, Giuseppe Antonio, et al. "An overview and future perspectives of aluminum batteries." Advanced Materials 2016, 28, 7564-7579.
    [18] Das, Shyamal K., Sadhan Mahapatra, and Homen Lahan. "Aluminium-ion batteries: developments and challenges." Journal of Materials Chemistry A 2017, 5, 6347-6367.
    [19] Lin, Meng-Chang, et al. "An ultrafast rechargeable aluminium-ion battery." Nature 2015, 520, 324.
    [20] Jayaprakash, N., Shyamal K. Das, and Lynden A. Archer. "The rechargeable aluminum-ion battery." Chemical communications 2011, 47, 12610-12612.
    [21] Wang, Wei, et al. "A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation." Scientific reports 2013, 3, 3383.
    [22] Gu, Sichen, et al. "Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery." Energy Storage Materials 2017, 6, 9-17.
    [23] Rani, J. Vatsala, et al. "Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum–ion battery." Journal of The Electrochemical Society 2013, 160, A1781-A1784.
    [24] Wu, M. S., et al. "Geometry and fast diffusion of AlCl4 cluster intercalated in graphite." Electrochimica Acta 2016, 195, 158-165.
    [25] Wang, Peng, et al. "Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density." Energy Storage Materials 2018.
    [26] Geng, Linxiao, et al. "Reversible electrochemical intercalation of aluminum in Mo6S8." Chemistry of Materials 2015, 27, 4926-4929.
    [27] Yu, Zhijing, et al. "Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries." Chemical Communications 2016, 52, 10427-10430.
    [28] Zafar, Zahid Ali, et al. "Cathode materials for rechargeable aluminum batteries: current status and progress." Journal of Materials Chemistry A 2017, 5, 5646-5660.
    [29] Muñoz-Torrero, David, et al. "Investigation of different anode materials for aluminium rechargeable batteries." Journal of Power Sources 2018, 374, 77-83.
    [30] Qingfeng, Li, et al. "Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts Influence of and Sulfide Addition." Journal of The Electrochemical Society 1990, 137, 2794-2798.
    [31] Wilkes, John S., et al. "Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis." Inorganic Chemistry 1982, 21, 1263-1264.
    [32] Gifford, P. R., and J. B. Palmisano. "A substituted imidazolium chloroaluminate molten salt possessing an increased electrochemical window." Journal of the Electrochemical Society 1987, 134, 610-614.
    [33] Lang, Christopher M., et al. "Cation electrochemical stability in chloroaluminate ionic liquids." The Journal of Physical Chemistry B 2015, 109, 19454-19462.
    [34] Wang, Huali, et al. "Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries." Journal of Materials Chemistry A 2015, 3, 22677-22686.
    [35] Eiden, Philipp, et al. "An experimental and theoretical study of the aluminium species present in mixtures of AlCl3 with the ionic liquids [BMP] Tf2N and [EMIm] Tf2N." Chemistry-a European Journal 2009, 15, 3426-3434.
    [36] Rocher, Nathalie M., et al. "Aluminium Speciation in 1‐Butyl‐1‐Methylpyrrolidinium Bis (trifluoromethylsulfonyl) amide/AlCl3 Mixtures." Chemistry-a European Journal 2009, 15, 3435-3447.
    [37] Mandai, Toshihiko, and Patrik Johansson. "Al conductive haloaluminate-free non-aqueous room-temperature electrolytes." Journal of Materials Chemistry A 2015, 3, 12230-12239.
    [38] Dymek, C. J., et al. "An Aluminum Acid‐Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids." Journal of The Electrochemical Society 1984, 131, 2887-2892.
    [39] 宋金穎, 微孔性聚偏氟乙烯高分子電解質之電化學特性研究, 2000
    [40] Feuillade, G., and Ph Perche. "Ion-conductive macromolecular gels and membranes for solid lithium cells." Journal of Applied Electrochemistry 1975, 5, 63-69.
    [41] Arya, Anil, and A. L. Sharma. "Polymer electrolytes for lithium ion batteries: a critical study." Ionics 2017, 23, 497-540.
    [42] Meyer, Wolfgang H. "Polymer electrolytes for lithium‐ion batteries." Advanced materials 1998, 10, 439-448.
    [43] Song, J. Y., Y. Y. Wang, and C. Cv Wan. "Review of gel-type polymer electrolytes for lithium-ion batteries." Journal of Power Sources 1999, 77, 183-197.
    [44] Chen, Renjie, et al. "The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons." Materials Horizons 2016, 3, 487-516.
    [45] 陳翁釧, 謝登存, 工業材料2004, 99-103
    [46] Peled, Emanuel. "The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model." Journal of The Electrochemical Society 1979, 126, 2047-2051.
    [47] Cheng, Xin‐Bing, et al. "A review of solid electrolyte interphases on lithium metal anode." Advanced Science 2016, 3.
    [48] Wu, Feng, et al. "An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances." Green Energy & Environment 2017.
    [49] Chen, Hao, et al. "Oxide film efficiently suppresses dendrite growth in aluminum-ion battery." ACS applied materials & interfaces 2017, 9, 22628-22634.
    [50] Wang, Huali, et al. "High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery." ACS applied materials & interfaces 2016, 8, 27444-27448.
    [51] Pradhan, Debabrata, and Ramana G. Reddy. "Dendrite-free aluminum electrodeposition from AlCl 3-1-ethyl-3-methyl-imidazolium chloride ionic liquid electrolytes." Metallurgical and Materials Transactions B 2012, 43, 519-531.
    [52] Welton, Thomas. "Room-temperature ionic liquids. Solvents for synthesis and catalysis." Chemical reviews 1999, 99, 2071-2084.
    [53] Lu, Jianmei, Feng Yan, and John Texter. "Advanced applications of ionic liquids in polymer science." Progress in Polymer Science 2009, 34, 431-448.
    [54] Park, Myounggu, et al. "A review of conduction phenomena in Li-ion batteries." Journal of Power Sources 2010, 195, 7904-7929.
    [55] Sun, J., D. R. MacFarlane, and M. Forsyth. "Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide." Electrochimica acta 2003, 48, 1971-1976.
    [56] Ye, Yun-Sheng, John Rick, and Bing-Joe Hwang. "Ionic liquid polymer electrolytes." Journal of Materials Chemistry A 2013, 1, 2719-2743.
    [57] Mecerreyes, David. "Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes." Progress in Polymer Science 2011, 36, 1629-1648.
    [58] Armand, Michel, et al. "Ionic-liquid materials for the electrochemical challenges of the future." Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, 129-137.
    [59] Wang, Zhanliang, and Zhiyuan Tang. "Characterization of the polymer electrolyte based on the blend of poly (vinylidene fluoride-co-hexafluoropropylene) and poly (vinyl pyrrolidone) for lithium ion battery." Materials chemistry and physics 2003, 82, 16-20.
    [60] Choi, Jae-Won, et al. "Microporous poly (vinylidene fluoride-co-hexafluoropropylene) polymer electrolytes for lithium/sulfur cells." Journal of Industrial and Engineering Chemistry 2006, 12, 939-949.
    [61] Raghavan, Prasanth, et al. "Electrochemical studies on polymer electrolytes based on poly (vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion—A comparative study." Materials Research Bulletin 2010, 45, 362-366.
    [62] Li, Xin, et al. "Polymer electrolytes based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries." Journal of power sources 2007, 167, 491-498.
    [63] Lin, Xiuling, et al. "Stimuli-responsive electrospun nanofibers from poly (N-isopropylacrylamide)-co-poly (acrylic acid) copolymer and polyurethane." Journal of Materials Chemistry B 2014, 2, 651-658.
    [64] Bubel, Kathrin, et al. "Tenside-free biodegradable polymer nanofiber nonwovens by “green electrospinning”." Macromolecules 2013, 46, 7034-7042.
    [65] Martwiset, Surangkhana, et al. "Pyrene‐doped electrospun PMMA‐PVC fibers for ferric ion detection." Journal of Applied Polymer Science 2013, 130, 3205-3211.
    [66] Ongun, Merve Zeyrek, et al. "Copper ion sensing with fluorescent electrospun nanofibers." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 90, 177-185.
    [67] Li, Dan, and Younan Xia. "Electrospinning of nanofibers: reinventing the wheel?." Advanced materials 2004, 16, 1151-1170.
    [68] Fong, H., I. Chun, and D. H. Reneker. "Beaded nanofibers formed during electrospinning." Polymer 1999, 40, 4585-4592.
    [69] Cloupeau, M., and B. Prunet-Foch. "Electrostatic spraying of liquids in cone-jet mode." Journal of Electrostatics 1989, 22, 135-159.
    [70] Chuang, Wen-Ju, and Wen-Yen Chiu. "Thermo-responsive nanofibers prepared from poly (N-isopropylacrylamide-co-N-methylol acrylamide)." Polymer 2012, 53, 2829-2838.
    [71] Mit‐uppatham, Chidchanok, Manit Nithitanakul, and Pitt Supaphol. "Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter." Macromolecular Chemistry and Physics 2004, 205, 2327-2338.
    [72] Casper, Cheryl L., et al. "Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process." Macromolecules 2004, 37, 573-578.
    [73] Rodrigues, Shalini, N. S. A. K. Munichandraiah, and A. K. Shukla. "AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery." Journal of Solid State Electrochemistry 1999, 3, 397-405.
    [74] Brug, G. J., et al. "The analysis of electrode impedances complicated by the presence of a constant phase element." Journal of electroanalytical chemistry and interfacial electrochemistry 1984, 176, 275-295.
    [75] Aurbach, Doron. "Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries." Journal of Power Sources 2000, 89, 206-218.
    [76] Sequeira, César, and Diogo Santos, eds. Polymer electrolytes: fundamentals and applications. Elsevier, 2010.
    [77] Yang, PeiXia, et al. "Characterization and properties of ternary P (VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes." Solid State Sciences 2012, 14, 598-606.
    [78] Ma, Y., et al. "Ionic conductivity enhancement in gel polymer electrolyte membrane with N-methyl-N-butyl-piperidine-bis (trifluoromethylsulfonyl) imide ionic liquid for lithium ion battery." Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 502, 130-138.
    [79] Zhou, Rui, et al. "Chemically cross-linked ultrathin electrospun poly (vinylidene fluoride-co-hexafluoropropylene) nanofibrous mats as ionic liquid host in electrochromic devices." Polymer 2014, 55, 1520-1526.
    [80] Li, Xin, et al. "Polymer electrolytes based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries." Journal of power sources 2007, 167,491-498.
    [81] Das, S., and A. Ghosh. "Structure, ion transport, and relaxation dynamics of polyethylene oxide/poly (vinylidene fluoride co-hexafluoropropylene)—lithium bis (trifluoromethane sulfonyl) imide blend polymer electrolyte embedded with ionic liquid." Journal of Applied Physics 2016, 119, 095101.
    [82] Ataollahi, N., et al. "Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte." Int. J. Electrochem. Sci 2012, 7, e6703.
    [83] Liew, Chiam–Wen, et al. "Effect of ionic liquid on semi–crystalline poly (vinylidene fluoride–co–hexafluoropropylene) solid copolymer electrolytes." Int J Electrochem Sci 2013, 8, 7779-7794.
    [84] Chaurasia, Sujeet Kumar, Rajendra Kumar Singh, and Suresh Chandra. "Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly (vinylidene fluoride‐co‐hexafluoropropylene) with the ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate." Journal of Applied Polymer Science 2015, 132.
    [85] Kim, Seong Hun, Jong Kuk Choi, and Young Chan Bae. "Mechanical properties and ionic conductivity of gel polymer electrolyte based on poly (vinylidene‐fluoride‐co‐hexafluoropropylene)." Journal of applied polymer science 2001, 81, 948-956.
    [86] Na, Haining, et al. "Structure and properties of electrospun poly (vinylidene fluoride)/polycarbonate membranes after hot‐press." Journal of Applied Polymer Science 2011, 122,774-781.
    [87] Sousa, Ricardo E., et al. "Poly (vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion." RSC Advances 2015, 5, 90428-90436.
    [88] Wang, Huali, et al. "Binder-free V2O5 cathode for greener rechargeable aluminum battery." ACS Applied materials & interfaces 2014, 7, 80-84.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE