簡易檢索 / 詳目顯示

研究生: 李思吟
Li, Su-Yin
論文名稱: I.探討銅釕中空奈米結構的形成機制 II.利用濕化學法合成鈀銅金屬間奈米晶體
I. Formation mechanism of CuRu hollow nanostructures II. Synthesis of intermetallic PdCu nanocrystals in wet-chemistry approach
指導教授: 吳欣倫
Wu, Hsin-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 34
中文關鍵詞: 金屬間截角菱形十二面體立方體
外文關鍵詞: intermetallic, Pd, Cu, truncated rhombic dodecahedron, cube
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在理想情況下,催化劑除了化學和結構穩定性外,還應具有高活性及選擇性且價格低廉,但單一金屬奈米晶體無法滿足,而這些可以透過添加第二種金屬形成雙金屬奈米晶體時產生的協同作用來滿足。多種金屬可以分成無序及有序晶體結構,分別稱為合金及金屬間奈米晶體。合金為多種金屬簡單混合及隨機分佈的化合物;金屬間奈米晶體為具有明確的化學計量及良好的晶體結構,其為有序原子排列的化合物。金屬間奈米晶體有序的原子排列與合金奈米晶體相比具有更強烈的電子相互作用、均勻的催化活性位點、鍵長和電子結構顯著變化以及因為金屬間奈米晶體的生成熱低於合金,所以它的催化活性及耐腐蝕性皆比合金好。由於不同形狀露出的晶面不同,導致催化反應上會有不同的催化效果,故我們希望能夠合成出不同形狀的金屬間奈米晶體。本實驗室選擇具有良好催化性能的鈀與價格較便宜的銅,透過共還原反應成功合成出金屬間截角菱形十二面體及立方體。希望未來我們可以比較不同晶面對催化效果的影響。

    Ideally, a catalyst should be highly active, selective and inexpensive, as well as chemistry and structural stability. However a single metallic nanocrystals cannot meet these basic requirements, which can be met by the synergistic effect of adding a second metal to form a bimetallic nanocrystals. Multiple metals can be classified into two types with disordered and ordered alloys, which called alloys and intermetallics, respectively. Alloys are compounds with simple mixing and random distribution of multiple metals; intermetallics are compounds with well-defined chemical composition and crystal structure with long-range atomic arrangement. The intermetallics have stronger electronic interactions, homogeneous catalytic active sites, significant changes in bond lengths and electronic structure than alloys. The catalytic activity and corrosion resistance of intermetallics are better than those of alloys because the heat of generation of intermetallic nanocrystal is lower than that of alloys. Since the different shapes of the exposed surfaces lead to different catalytic activity in catalytic reactions, we hope to synthesise intermetallic nanocrystals with different morphologies. In this work, Pd and Cu have been chosen, which have good catalytic properties. Intermetallic PdCu nanocrystals with the shapes of truncated rhombic dodecahedron and cube were successfully synthesized by coreduction reaction. In the future, the activity of different crystalline surfaces will be compared.

    摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章介紹 1 1.1 中空奈米結構 1 1.1.1賈凡尼置換反應 1 1.1.2 共還原反應 2 1.1.3表面擴散 2 1.2 研究動機 3 第二章 探討銅釕奈米籠及奈米框架的形成機制 5 2.1 介紹 5 2.2 實驗部分 5 2.2.1 藥品 5 2.2.2 合成銅奈米立方體 5 2.2.3 合成銅釕奈米籠及奈米框架 6 2.2.4 儀器 6 2.3 結果與討論 6 2.3.1 中空合金奈米結構形成機制 6 2.4 結論 8 第三章 介紹 9 3.1 金屬間奈米晶體 9 3.2合成方法 12 3.2.2濕化學法 13 3.3催化劑形貌對催化活性的影響 14 3.4材料選擇 16 3.5研究動機 17 第四章 透過濕化學法合成鈀銅金屬間奈米晶體 18 4.1 介紹 18 4.2 實驗部分 18 4.2.1 藥品 18 4.2.2 鈀銅金屬間截角菱形十二面體 18 4.2.3 鈀銅金屬間立方體 19 4.2.3 對硝基苯酚還原反應 19 4.2.3 儀器 19 4.3 結果與討論 20 4.3.1 合成鈀銅金屬間截角菱形十二面體 20 4.3.2 合成鈀銅金屬間立方體 26 4.3.3 對硝基苯酚還原反應 29 4.4 結論 30 4.5 參考文獻 31

    [1] Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc., 2007, 2, 2182-2190.
    [2] Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold Nanocages: Synthesis, Properties, and Applications. Accounts Chem. Res., 2008, 41, 1587-1595.
    [3] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295, 469-472.
    [4] Snyder, J.; Livi, K.; Erlebacher, J. Oxygen Reduction Reaction Performance of MTBD beti -Encapsulated Nanoporous NiPt Alloy Nanoparticles. Adv. Funct. Mater., 2013, 23, 5494-5501.
    [5] Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R-Rep., 2010, 70, 44-62.
    [6] Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev., 2016, 116, 10414-10472.
    [7] Lyu, L. M.; Kao, Y. C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y. C.; Kuo, C. H. Spiny Rhombic Dodecahedral CuPt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates. Chem. Mat., 2017, 29, 5681-5692.
    [8] Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science, 2015, 349, 412-416.
    [9] Li, X.; Liu, Y. M.; Zhang, J. J.; Yan, B.; Jin, C. Q.; Dou, J. J.; Li, M. Y.; Feng, X. H.; Liu, G. No Annealing Synthesis of Ordered Intermetallic PdCu Nanocatalysts for Boosting Formic Acid Oxidation. Chem. Mat., 2022, 34, 1385-1391.
    [10] Jiang, G. M.; Zhu, H. Y.; Zhang, X.; Shen, B.; Wu, L. H.; Zhang, S.; Lu, G.; Wu, Z. B.; Sun, S. H. Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 11014-11022.
    [11] Yan, Y. C.; Du, J. S. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic Nanocrystals: Syntheses and Catalytic Applications. Adv. Mater., 2017, 29, 1605997.
    [12] Li, J. R.; Sun, S. Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis. Accounts Chem. Res., 2019, 52, 2015-2025.
    [13] Kim, J.; Lee, Y.; Sun, S. H. Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. J. Am. Chem. Soc., 2010, 132, 4996-4997.
    [14] Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts. ACS Nano, 2016, 10, 6345-6353.
    [15] Ontaneda, J.; Bennett, R. A.; Grau-Crespo, R. Electronic Structure of Pd Multilayers on Re(0001): The Role of Charge Transfer. J. Phys. Chem. C, 2015, 119, 23436-23444.
    [16] Jiang, K.; Zhang, H. X.; Zou, S. Z.; Cai, W. B. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys., 2014, 16, 20360-20376.
    [17] Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A-Chem., 1997, 115, 421-429.
    [18] Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-Controlled Synthesis of Monodisperse PdCu Nanocubes and Their Electrocatalytic Properties. ChemSusChem, 2013, 6, 1878-1882.
    [19] Xie, M. H.; Lyu, Z. H.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell. J. Am. Chem. Soc., 2021, 143, 8509-8518.
    [20] Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Accounts Chem. Res., 2013, 46, 1783-1794.
    [21] Kim, H. Y.; Jun, M.; Joo, S. H.; Lee, K. Intermetallic Nanoarchitectures for Efficient Electrocatalysis. ACS Nanoscience Au, 2023, 3, 28-36.
    [22] Kang, Y. J.; Murray, C. B. Synthesis and Electrocatalytic Properties of Cubic Mn-Pt Nanocrystals (Nanocubes). J. Am. Chem. Soc., 2010, 132, 7568-7569.
    [23] Liu, Y.; Chu, Y.; Zhuo, Y. J.; Dong, L. H.; Li, L. L.; Li, M. Y. Controlled synthesis of various hollow Cu nano/microStructures via a novel reduction route. Adv. Funct. Mater., 2007, 17, 933-938.
    [24] Tang, Y. A.; Chi, X. W.; Zoub, S. Z.; Zeng, X. Q. Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications. Nanoscale, 2016, 8, 5771-5779.
    [25] Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev., 2016, 45, 4747-4765.
    [26] Chiou, J. R.; Lai, B. H.; Hsu, K. C.; Chen, D. H. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J. Hazard. Mater., 2013, 248, 394-400.
    [27] Strachan, J.; Barnett, C.; Masters, A. F.; Maschmeyer, T. 4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catal., 2020, 10, 5516-5521.
    [28] Espinosa, M. M. F.; Cheng, T.; Xu, M. J.; Abatemarco, L.; Choi, C.; Pan, X. Q.; Goddard, W. A.; Zhao, Z. P.; Huang, Y. Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Lett., 2020, 5, 3672-3680.

    無法下載圖示 校內:2028-08-16公開
    校外:2028-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE