研究生: |
沈孟慧 Shen, Meng-Hui |
---|---|
論文名稱: |
溶液式黑色素絕緣層於五環素薄膜電晶體與記憶體元件之應用 Solution-processed Melanin for Pentacene-based Thin Film Transistors and Memory Applications |
指導教授: |
王永和
Wang, Yeong-Her |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 生物性材料 、黑色素 、有機薄膜電晶體 、電阻式記憶體 |
外文關鍵詞: | biomaterial, melanin, organic thin film transistor, resistive random-access memory |
相關次數: | 點閱:180 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溶液式生物材料黑色素應用於五環素有機薄膜電晶體以及電阻式記憶體,首先使用能量散射光譜儀以及拉曼光譜分析黑色素薄膜,得知其化學成分組成為C64N11O24。由原子力顯微鏡觀察得知此黑色素薄膜具有低表面粗糙度且為非晶向成長。
利用薄膜經由烤乾處理後,水和分子(H3O+)的消失進而使薄膜本身帶負電;黑色素應用於有機薄膜電晶體作為介電層展現出優異的電晶體特性,如:高場效載子遷移率(18.19 cm2V-1s-1)、低臨界電壓(-0.4 V)以及低次臨界效應(280 mV/decade)。
而藉由討論使用不同上電極、下電極金屬以及薄膜的溫度處理所造成的金屬功函數差及表面粗糙度的不同,不經由溫度處理並以ITO和鋁作為上下電極時,薄膜具非常平滑的表面(RMS = 0.53 nm),且擁有最好的記憶體特性,如低寫入電壓(-1.24 V)、抹除電壓(2.4 V)。
Solution-processed melanin, one of environmentally friendly and biocompatible biomaterial, was applied in pentacene-based organic thin film transistors (OTFTs) as gate dielectrics, and resistive random-access memories (RRAMs). The chemical composition of the solution-processed melanin thin film (C64N11O24) was verified through energy dispersive spectrometer and Raman spectra. The smooth surface morphology was analyzed by atomic force microscope, while the amorphous thin film was also observed via X-ray diffraction.
The electrical properties of thin film transistors show high field-effect mobility of 18.19 cm2V-1s-1, low threshold voltage of -0.4 V, and low subthreshold swing of 280 mV/decade. The good performance of OTFTs can be attributed to the negatively-charged melanin film due to the absence of H3O+ ions after baking treatment.
On the other hand, different top electrodes, bottom electrodes, as well as baking temperatures have been discussed in melanin thin film RRAMs. The best performance was obtained by using ITO/melanin/Al structure, which can be attributed to smooth surface and lower work function of top electrode than bottom electrode. The set/reset voltage and on/off ratio are -1.24/2.4 V and 4.7 x 103, respectively. The easily-formed filament results from the existence of ions in melanin, especially in film without baking.
[1] R. R. Burch, Y. H. Dong, C. Fincher, M. Goldfinger, and P. E. Rouviere, “Electrical properties of polyunsaturated natural products: field effect mobility of carotenoid polyenes,” Synthetic Metals, vol. 146, no. 1, pp. 43-46, 2004.
[2] J. A. Hagen, W. Li, J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Applied Physics Letters, vol. 88, no. 17, 2006.
[3] C. J. Bettinger, and Z. Bao, “Organic Thin-Film Transistors Fabricated on Resorbable Biomaterial Substrates,” Advanced Materials, vol. 22, no. 5, pp. 651-655, 2010.
[4] M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, “Environmentally sustainable organic field effect transistors,” Organic Electronics, vol. 11, no. 12, pp. 1974-1990, 2010.
[5] J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, and T.-C. Wen, “Chicken Albumen Dielectrics in Organic Field-Effect Transistors,” Advanced Materials, vol. 23, no. 35, pp. 4077-4081, 2011.
[6] C.-H. Wang, C.-Y. Hsieh, and J.-C. Hwang, “Flexible Organic Thin-Film Transistors with Silk Fibroin as the Gate Dielectric,” Advanced Materials, vol. 23, no. 14, pp. 1630-1634, 2011.
[7] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, and T.-J. Liu, “Pentacene organic thin-film transistors with solution-based gelatin dielectric,” Organic Electronics, vol. 14, no. 4, pp. 1170-1176, 2013.
[8] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Organic Electronics, vol. 8, no. 6, pp. 648-654, 2007.
[9] C. Yumusak, T. B. Singh, N. S. Sariciftci, and J. G. Grote, “Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric,” Applied Physics Letters, vol. 95, no. 26, 2009.
[10] Y. S. Kim, K. H. Jung, U. R. Lee, K. H. Kim, M. H. Hoang, J.-I. Jin, and D. H. Choi, “High-mobility bio-organic field effect transistors with photoreactive DNAs as gate insulators,” Applied Physics Letters, vol. 96, no. 10, 2010.
[11] I. G. Kim, H. J. Nam, H. J. Ahn, and D.-Y. Jung, “Electrochemical growth of synthetic melanin thin films by constant potential methods,” Electrochimica Acta, vol. 56, no. 7, pp. 2954-2959, 2011.
[12] M. Abbas, F. D’Amico, L. Morresi, N. Pinto, M. Ficcadenti, R. Natali, L. Ottaviano, M. Passacantando, M. Cuccioloni, M. Angeletti, and R. Gunnella, “Structural, electrical, electronic and optical properties of melanin films,” The European Physical Journal E, vol. 28, no. 3, pp. 285-291, 2009.
[13] C. J. Bettinger, J. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, “Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering,” Biomaterials, vol. 30, no. 17, pp. 3050-3057, 2009.
[14] D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Applied Physics Letters, vol. 95, no. 13, 2009.
[15] M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwoediauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, and S. Bauer, “Biocompatible and Biodegradable Materials for Organic Field-Effect Transistors,” Advanced Functional Materials, vol. 20, no. 23, pp. 4069-4076, 2010.
[16] S. Subianto, G. Will, and P. Meredith, “Electrochemical synthesis of melanin free-standing films,” Polymer, vol. 46, no. 25, pp. 11505-11509, 11/28/, 2005.
[17] P. Meredith, and T. Sarna, “The physical and chemical properties of eumelanin,” Pigment Cell Research, vol. 19, no. 6, pp. 572-594, 2006.
[18] J. Lindgren, P. Uvdal, P. Sjovall, D. E. Nilsson, A. Engdahl, B. P. Schultz, and V. Thiel, “Molecular preservation of the pigment melanin in fossil melanosomes,” Nature Communications, vol. 3, 2012.
[19] P. Meredith, B. J. Powell, J. Riesz, S. P. Nighswander-Rempel, M. R. Pederson, and E. G. Moore, “Towards structure-property-function relationships for eumelanin,” Soft Matter, vol. 2, no. 1, pp. 37-44, 2006.
[20] P. J. Goncalves, O. Baffa, and C. F. O. Graeff, “Effects of hydrogen on the electronic properties of synthetic melanin,” Journal of Applied Physics, vol. 99, no. 10, 2006.
[21] A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, “Role of semiconductivity and ion transport in the electrical conduction of melanin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 23, pp. 8943-8947, 2012.
[22] C. Giacomantonio, Charge Transport in Melanin, a Disordered Bio-Organic Conductor, 2005.
[23] M. Jastrzebska, A. Kocot, and L. Tajber, “Photoconductivity of synthetic dopa–melanin polymer,” Journal of Photochemistry and Photobiology B: Biology, vol. 66, no. 3, pp. 201-206, 2002.
[24] M. Jastrzebska, A. Kocot, J. K. Vij, J. Zalewska-Rejdak, and T. Witecki, “Dielectric studies on charge hopping in melanin polymer,” Journal of Molecular Structure, vol. 606, no. 1–3, pp. 205-210, 2002.
[25] M. Kitamura, and Y. Arakawa, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates,” Applied Physics Letters, vol. 91, no. 5, pp. 053505-053505-3, 2007.
[26] J.-S. Lim, P.-K. Shin, B.-J. Lee, and S. Lee, “Plasma polymerized methyl methacrylate gate dielectric for organic thin-film transistors,” Organic Electronics, vol. 11, no. 5, pp. 951-954, 2010.
[27] W. S. Wong, and A. Salleo, Flexible Electronics: Materials and Applications: Springer London, Limited, 2009.
[28] J. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, and P. Meredith, “Device-Quality Electrically Conducting Melanin Thin Films,” Advanced Materials, vol. 20, no. 18, pp. 3539-3542, 2008.
[29] M. Rahaman, Y. Li, B. S. Bal, and W. Huang, “Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 6, pp. 2325-2333, 2008.
[30] D. K. Mukhopadhyay, C. Suryanarayana, and F. H. Froes, “Structural evolution in mechanically alloyed Al-Fe powders,” Metallurgical and Materials Transactions A, vol. 26, no. 8, pp. 1939-1946, 1995.
[31] W. Wang, G. Dong, L. Wang, and Y. Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, no. 2, pp. 414-418, 2008.
[32] R. R. L. Snyder, J. Fiala, and H. J. Bunge, Defect and Microstructure Analysis by Diffraction: Oxford University Press on Demand, 1999.
[33] V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” Journal of Molecular Structure, vol. 744–747, no. 0, pp. 717-721, 2005.
[34] G. Perna, A. Gallone, V. Capozzi, P. F. Biagi, A. Fratello, G. Guida, P. Zanna, E. Argenzio, and R. Cicero, “Optical Spectra of Melanin Films Extracted from Rana esculenta L,” Physica Scripta, vol. 2005, no. T118, pp. 89, 2005.
[35] L. E. Bolívar-Marinez, D. S. Galvão, and M. J. Caldas, “Geometric and Spectroscopic Study of Some Molecules Related to Eumelanins. 1. Monomers,” The Journal of Physical Chemistry B, vol. 103, no. 15, pp. 2993-3000, 1999.
[36] S. Matsunuma, “Theoretical simulation of resonance Raman bands of amorphous carbon,” Thin Solid Films, vol. 306, no. 1, pp. 17-22, 1997.
[37] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts: Wiley, 2004.
[38] Y.-C. Li, Y.-J. Lin, H.-J. Yeh, T.-C. Wen, L.-M. Huang, Y.-K. Chen, and Y.-H. Wang, “Ion-modulated electrical conduction in polyaniline-based field-effect transistors,” Applied Physics Letters, vol. 92, no. 9, 2008.
[39] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Applied Physics Letters, vol. 88, no. 16, 2006.
[40] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology: Wiley, 2002.
[41] B. Gunduz, and F. Yakuphanoglu, “Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor,” Sensors and Actuators A: Physical, vol. 178, no. 0, pp. 141-153, 2012.
[42] R. Pethig, Dielectric and electronic properties of biological materials: Wiley, 1979.
[43] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28-36, 2008.
[44] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO[sub 2],” Applied Physics Letters, vol. 88, no. 23, pp. 232106, 2006.
[45] C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, L. Tzyh-Cheang, Y. Fu-Liang, H. Chenming, and T.-Y. Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” Electron Device Letters, IEEE, vol. 28, no. 5, pp. 366-368, 2007.
[46] G. D. Sharma, V. Singh Choudhary, and M. S. Roy, “Effect of annealing on the optical, electrical, and photovoltaic properties of bulk hetero-junction device based on PPAT:TY blend,” Solar Energy Materials and Solar Cells, vol. 91, no. 4, pp. 275-284, 2007.
[47] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, “Polymer electronic memories: Materials, devices and mechanisms,” Progress in Polymer Science, vol. 33, no. 10, pp. 917-978, 2008.
[48] Z. Bao, and J. Locklin, Organic Field-Effect Transistors: Taylor & Francis, 2007.
[49] N. J. Watkins, and Y. Gao, “Vacuum level alignment of pentacene on LiF/Au,” Journal of Applied Physics, vol. 94, no. 2, pp. 1289, 2003.
[50] S. J. Kang, Y. Yi, C. Y. Kim, S. W. Cho, M. Noh, K. Jeong, and C. N. Whang, “Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au,” Synthetic Metals, vol. 156, no. 1, pp. 32-37, 2006.
[51] Y. Kim, C. Lee, I. Shim, D. Wang, and J. Cho, “Nucleophilic Substitution Reaction Based Layer-by-Layer Growth of Superparamagnetic Nanocomposite Films with High Nonvolatile Memory Performance,” Advanced Materials, vol. 22, no. 45, pp. 5140-5144, 2010.
[52] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application,” Nano Letters, vol. 9, no. 4, pp. 1636-1643, 2009.