簡易檢索 / 詳目顯示

研究生: 魯大中
Lue, Da-Chung
論文名稱: 手握式軟組織剛性量測器之設計
Design of a Hand-Held Device for Measuring Stiffness of Soft Tissues
指導教授: 黃金沺
Huang, Chin-Tien
朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 53
中文關鍵詞: 剛性楊氏係數軟組織壓痕
外文關鍵詞: soft tissues, Young's modulus, stiffness, indentation
相關次數: 點閱:70下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了量化軟組織之剛性,本論文希望發展一個可使用於臨床上的壓痕儀器以量測軟組織的剛性。實驗將以豬肝作為離體(in-vitro)實驗樣本,選擇豬肝是因為取得方便且尺寸與人類相似,選擇肝臟這個器官則是因為肝臟有肝硬化的問題,適合做為本研究的實驗樣本。本論文設計了筆型探棒的機構以及選擇相關元件做成超音波壓痕儀器,以豬肝作為實驗樣本,嘗試進行離體(
    in-vitro)實驗並驗證其可行性。
    首先,使用材料測試機以特定推進速率分別量測正常與因結凍而硬化的豬肝之有效楊氏係數,除了可確認本研究的數學模型可以成功地分辨正常與硬化之豬肝外
    ,還能以此建立標準化的數據。之後再以人手推進筆型探棒,同樣地計算有效楊氏係數,並與標準化的數據做比較。實驗發現,本研究可以透過實驗數據辨別正常與硬化的豬肝,且經由人手驅動筆型探棒而得到的有效楊氏係數(4,040 ± 656 Pa)大於標準化的數據(1,758 ± 574 Pa at 1.0mm/s)。本文推測這是因為人手控制探棒不易且推進速率高於標準實驗的緣故,使得量測結果大於標準數據將近1.5倍。但若計算其變異係數(coefficient of variation),則人手驅動的結果(
    16%)優於標準化的數據(33%),這顯示出手動量測具有較佳的一致性。
    由實驗結果可知,若人手能以適當的速率推進筆型探棒以量測軟組織之受力-變形行為,則超音波壓痕儀器可以客觀地量化軟組織的剛性。

    For quantification of stiffness of soft tissues, we develop a measuring device and hope could be used in clinical application. The in-vitro experiment object is porcine liver. We choose it because of its convenience to obtain and its size similar to human beings. In addition many patients in Taiwan have liver cirrhosis problems and porcine liver is comportable to be an experiment object.
    We design and improve related elements including pen-size probe, load cell and so forth based on works found in the literature. The porcine liver is chosen for in-vitro experiment object. First, using material testing system (MTS) in specific indentation rate evaluates the apparent Young’s modulus of normal and frozen liver were evaluated individually to verify whether the mathematical model in this thesis is feasible to differentiate these two kinds of livers and to establish a normal database. Then, the probe is driven manually, evaluating the effective Young’s modulus too, and compared with the database finally.
    From the results, porcine livers from normal and frozen ones can be identified successfully. And the apparent Young’s modulus getting from manual experiments (4,040±656Pa) is about 1.5 folds of these obtained from MTS experiments (1,758±574Pa). We suppose that it is not easy to control the probe by hand, and it causes the probe vibrating and indenting too fast. But for the coefficient of variation, the result of manual experiments is 16% and the result of MTS experiments is 33%. From this statistics, we think that it is feasible to quantitate the stiffness measured by the ultrasound indentation device driven by hand, but it maybe need more experiment samples to verify the results.

    摘 要.............................................................i 英文摘要.........................................................ii 誌 謝...........................................................iii 目 錄............................................................iv 圖目錄...........................................................vi 表目錄.........................................................viii 符號表...........................................................ix 第一章 緒論.....................................................1 1-1 研究背景.................................................1 1-2 文獻回顧.................................................2 1-3 研究動機與目的...........................................5 1-4 本文架構.................................................5 第二章 實驗及主要元件之技術與原理...............................7 2-1 Hayes模型................................................7 2-2 超音波換能器原理.........................................9 2-2-1 超音波技術...............................................9 2-2-2 超音波換能器............................................14 2-3 壓力感測器之原理與設計..................................17 第三章 手握式壓痕儀器之建構與離體實驗之設計....................19 3-1 超音波壓痕儀器..........................................19 3-2 實驗設計與規劃..........................................26 第四章 離體實驗結果............................................29 4-1 材料測試機實驗結果......................................29 4-1-1 實驗結果................................................29 4-1-2 線性擬合範圍之篩選......................................31 4-1-3 硬化豬肝之有效楊氏係數的量測............................35 4-1-4 材料測試機實驗之有效楊氏係數的量測......................37 4-2 手握式筆型探棒實驗結果..................................38 第五章 討論....................................................41 5-1 推進速率對於實驗結果之影響..............................41 5-2 線性擬合範圍之篩選......................................44 5-3 結凍硬化豬肝之量測結果..................................45 5-4 材料測試機實驗結果之討論................................45 5-5 手握式筆型探棒實驗之量測結果............................46 5-6 材料測試機與手握式筆型探棒實驗結果之比較................47 第六章 結論與建議..............................................49 參考文獻.........................................................51 自 述............................................................53

    [1] 羅錦河,肝硬化解讀,健康世界雜誌社,1999。

    [2] Schade, H., “Untersuchungen zur organfunction des bindegewebes,“
    Ztschr. F. Exper. Path. U. Therapis, Vol.11: pp. 369-399, 1912.

    [3] Kirk, E., and Kvorning, S. A., “Quantitative measurements of the
    elastic properties of the skin and subcutaneous tissue in young and
    old inviduals,” J. Gerontology, Vol.4: pp. 273-284, 1949.

    [4] Krouskop, T. A., Muilenberg, A. L., Doughtery, D. R., Winningham, D. J.,
    “Computer-aided design of prosthetic sockets for an above-knee amputee,“
    Journal of Rehabilitation Research and Development, Vol.24, No.2, pp.
    31-38, 1987.

    [5] Steege, J. W., Schnur, D. S., van Vorhis, R. L., and Rovick, J.,
    “Finite element analysis as a method of pressure prediction in the
    below-knee socket,” Proc. 10th annual RESNA, San Jose, pp. 814-816,
    1987.

    [6] A. F. T. Mak, Y. P. Zheng, ”Development of an Ultrasound Indentation
    System for Biomechanical Properties Assessment of Soft Tissues In-Vivo,”
    IEEE-EMBC and CMBEC, Theme 7: Instrumentation, pp. 1599-1600, 1995.

    [7] A. F. T. Mak, Y. P. Zheng, “Extraction of Quasi-Linear Viscoelastic
    Parameters for Lower Limb Soft Tissues from Manual Indentation
    Experiment,” Transactions of ASME, Vol.121: pp. 330-339, June 1999.

    [8] Kalanovic, D., Ottensmeyer, M. P., Gross, J., Buess, G., Dawson, S. L.,
    “Independent Testing of Soft Tissue Visco-elasticity Using Indentation
    and Rotary Shear Deformations,” Proceeding of Medicine Meets Virtual
    Reality 11, IOS Press., 2003.

    [9] Ottensmeyer, M. P., Salisbury, J. K. Jr., “In Vivo Data Acquisition
    Instrument for Solid Organ Mechanical Property Measurement,” Proceedings
    of the MICCAI 2001 4th International Conference, Utrecht, The Netherlands,
    975-982, 14-17 October 2001.

    [10] Nava, A., Mazza, E., Kleinermann, F., Avis, N., McClure, J.,
    “Determination of the Mechanical Properties of soft human tissues
    through aspiration experiments,” MICCAI 2003 Proc., pp. 222-229, 2003.

    [11] J. D. Brown et al., “Computer-Controlled Motorized Endoscopic Grapser
    for In Vivo Measurement of Soft Tissue Biomechanical Characteristics,”
    Proceedings of Medicine Meets Virtual Reality 02/10, J.D. Westwood, et
    al. (Eds.), Newport Beach, CA. IOS Press., pp. 71-73, 23-26 Jan 2002.

    [12] Hayes et al., ”A mathematical analysis for indentation tests of
    articular cartilage,” J. Biomechanics, Vol.5: pp. 541-551, 1972.

    [13] A. F. T. Mak, Y. P. Zheng, “Objective assessment of limb tissue
    elasticity: Development of a manual indentation procedure,” Journal
    of Rehabilitation Research and Development, Vol.36, No.2, pp. 71-85,
    April 1999.

    [14] M. Zhang, A. F. T. Mak, Y. P. Zheng, “Estimating the effective Young's
    modulus of soft tissues from indentation tests – nonlinear finite
    element analysis of effects of friction and large deformation,” Med.
    Eng. Phys., Vol.19, pp. 512-517, 1997.

    [15] I. Y. Kuo, B. Hete, K. K. Shung, “A novel method for the measurement
    of acoustic speed,” Journal of the Acoustical Society of America,
    Vol.88, No.4, pp. 1679-1682, October 1990.

    下載圖示 校內:2011-07-27公開
    校外:2011-07-27公開
    QR CODE