簡易檢索 / 詳目顯示

研究生: 李忠穎
Li, Zhong-Ying
論文名稱: 使用快速準絕熱法優化絕緣層覆矽3-dB分光與垂直耦合器
Optimization of Silicon-on-Insulator Adiabatic 3-dB and Vertical Couplers using the Fast Quasiadiabatic Approach
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 49
中文關鍵詞: 快速準絕熱動態絕緣層覆矽3-dB分光器矽鍺光調變器
外文關鍵詞: fast quasiadiabatic dynamics (FAQUAD), silicon-on-insulator (SOI), 3-dB splitter, SiGe electroabsorption modulator
相關次數: 點閱:114下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研究快速準絕熱動態(FAQUAD)理論運用於不同型態之波導,透過定義一高折射率差矽光子元件的絕熱參數,以快速準絕熱動態固定絕熱參數為一常數,重新分配波導沿傳播方向的絕熱性,因此進行光功率耦合時,非需要的高階模態將不會被激發進而干擾耦合結果。
    依據3-dB分光器基於絕緣層覆矽(silicon-on-insulator, SOI)脊狀波導設計與模擬結果,使用快速準絕熱動態理論計算過後波導耦合長度最短可達7.1μm,耦合效率大於傳統耦合長度100μm以上的線性絕熱分光器,以達到300nm(1400nm~1700nm)操作頻寬時分光輸出差保持在5dB以下;寬度製程容忍度在正負40nm時分光輸出差保持在1dB以下。
    此外,運用快速準絕熱動態方法改進矽鍺光調變器與矽波導之間垂直漸逝耦合。依據模擬結果,使用快速準絕熱動態重新設計線性錐形波導長度可使元件長度由250μm減少至25μm。考慮材料吸收,長度縮短也使插入損耗由3dB降低至1.35dB。

    We present a short and broadband 3-dB splitter based on silicon-on-insulator (SOI) rib waveguides. The tapered couplers are designed using the fast quasiadiabatic dynamics (FAQUAD) protocol to homogeneously distribute adiabaticity over the length. The FAQUAD protocol is suitable for SOI structure which provides high index contrast. Our simulations show that the shortest coupler can be achieved at 7.1μm long; and for lengths greater than or equal to 23.7μm, the devices have high tolerance to fabrication errors and 300 nm bandwidth.
    In addition, we use the FAQUAD protocol to redesign the taper waveguide of SiGe electroabsortion modulators (EAMs). In this way, we get a much shorter length taper for vertical coupling from silicon strip waveguide to SiGe EAMs. Simulation results show that the SiGe taper waveguide length can be shrunk from 250μm to 25μm, and the insertion loss from material absorption can be reduce from 3dB to 1.35dB by optimizing the taper profile.

    中英文摘要 i 誌謝 viii 目錄 ix 圖目錄 x 表目錄 xiii Chapter 1 簡介 1 1.1 簡介 1 1.2 論文架構 2 Chapter 2 理論分析 3 2.1 耦模分析 3 2.2 2×2耦合器 8 2.3 消逝場耦合 11 2.4 絕熱轉換 13 2.5 快速準絕熱動態 16 Chapter 3 設計與模擬 18 3.1 2x2 3-dB 分光器設計 18 3.1.1 線性耦合器分析與模擬 19 3.1.2 快速準絕熱動態(FAQUAD)耦合器分析與模擬 24 3.2 電致調變器耦合設計 35 3.2.1 線性錐型波導耦合器分析與模擬 37 3.2.2 快速準絕熱動態(FAQUAD)錐型波導耦合器分析與模擬 39 Chapter 4 結論 45 4.1 結論 45 Reference 46

    1.C. Sun, M.T. Wade, Y. Lee, J.S. Orcutt, L. Alloatti, M.S. Georgas, A.S. Waterman, J.M. Shainline, R.R. Avizienis, S. Lin, B.R. Moss, R. Kumar, F. Pavanello, A.H. Atabaki, H.M. Cook, A.J. Ou, J.C. Leu, Y.-H. Chen, K. Asanović, R.J. Ram, M.A. Popović, and V.M. Stojanović, "Single-chip microprocessor that communicates directly using light", Nature 528, pp. 534-538 (2015).
    2.B.G. Lee, X. Chen, A. Biberman, X. Liu, I.W. Hsieh, C.Y. Chou, J.I. Dadap, F. Xia, W.M.J. Green, L. Sekaric, Y.A. Vlasov, R.M. Osgood, and K. Bergman, "Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks", IEEE Photonics Technology Letters 20(6), pp. 398-400 (2008).
    3.A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, "Anderson localization of entangled photons in an integrated quantum walk", Nature Photonics 7, pp. 322-328 (2013).
    4.Z. Zhang, X. Hu, and J. Wang, "On-chip optical mode exchange using tapered directional coupler", Scientific Reports 5, 16072 (2015).
    5.K. Okamoto, Fundamentals of optical waveguides (Elsevier, 2nd ed.), Chap. 4 (2006).
    6.Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N.A.F. Jaeger, and L. Chrostowski, "Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control", Optics Express 23(3), pp. 3795-3808 (2015).
    7.K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, "Adiabatic and Multimode Interference Couplers on Silicon-on-Insulator", IEEE Photonics Technology Letters 18(21), pp. 2287-2289 (2006).
    8.J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, "Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling", Optics Letters 38(13), pp. 2221-2223 (2013).
    9.L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator", Optics Express 13(8), pp. 3129-3135 (2005).
    10.K. Wada, and L.C. Kimerling, Photonics and Electronics with Germanium (John Wiley & Sons, 1st ed.), Chap. 9 (2015).
    11.D. Feng, W. Qian, H. Liang, C.C. Kung, Z. Zhou, Z. Li, J.S. Levy, R. Shafiiha, J. Fong, B.J. Luff, and M. Asghari, "High-Speed GeSi Electroabsorption Modulator on the SOI Waveguide Platform", IEEE Journal of Selected Topics in Quantum Electronics 19(6), pp. 64-73 (2013).
    12.H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, "Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics", Optics Express 25(12), pp. 13626-13634 (2017).
    13.L. Jia-ming, Photonic Devices (Cambridge University Press, 1st ed.), Part II (2005).
    14.L. Pavesi, and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 3rd ed.), Chap. 7 (2006).
    15.W.S.C. Chang, Fundamentals of Guided-Wave Optoelectronic Devices (Cambridge University Press, 1st ed.), Chap. 2 (2009).
    16.C.F.G. Alegria, "All-fibre devices for WDM optical communications", University of Southampton, Department of Electronics and Computer Science, Doctoral Thesis (2001).
    17.L. Ym, and C. Bw, "Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer", Journal of Optics 15(8), 085501 (2013).
    18.X. Sun, and A. Yariv, "Engineering supermode silicon/III-V hybrid waveguides for laser oscillation", J. Opt. Soc. Am. B 25(6), pp. 923-926 (2008).
    19.J. Durel, T. Ferrotti, A. Chantre, S. Cremer, J. Harduin, S. Bernabé, C. Kopp, F. Boeuf, B.B. Bakir, and J.-E. Broquin, "Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics", SPIE OPTO 9750, 97500O (2016).
    20.L. Lever, Z. Ikonić, and R.W. Kelsall, "Adiabatic mode coupling between SiGe photonic devices and SOI waveguides", Optics Express 20(28), pp. 29500-29506 (2012).
    21.X. Sun, H.-C. Liu, and A. Yariv, "Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system", Optics Letters 34(3), pp. 280-282 (2009).
    22.S. Martínez-Garaot, J.G. Muga, and S.-Y. Tseng, "Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics", Optics Express 25(1), pp. 159-167 (2017).
    23.E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J.G. Muga, "Shortcuts to adiabaticity", Advances In Atomic, Molecular, and Optical Physics 62, pp. 117-169 (2013).
    24.M.G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, "High-fidelity quantum driving", Nature Physics 8, pp. 147-152 (2011).
    25.J. Zhang, J.H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, "Experimental Implementation of Assisted Quantum Adiabatic Passage in a Single Spin", Physical Review Letters 110(24), 240501 (2013).
    26.X. Chen, R.-D. Wen, and S.-Y. Tseng, "Analysis of optical directional couplers using shortcuts to adiabaticity", Optics Express 24(16), pp. 18322-18331 (2016).
    27.T.-H. Pan, and S.-Y. Tseng, "Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity", Optics Express 23(8), pp. 10405-10412 (2015).
    28.M.L. Cooper, and S. Mookherjea, "Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides", Optics Express 17(3), pp. 1583-1599 (2009).
    29.M. Born, and V. Fock, "Beweis des Adiabatensatzes", Zeitschrift für Physik 51(3), pp. 165-180 (1928).
    30.H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N.A.F. Jaeger, "2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides", Photonics North 2013 8915, 89150V (2013).
    31.Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, "Integrated dual-mode 3 dB power coupler based on tapered directional coupler", Scientific Reports 6, 23516 (2016).
    32.H. Yun, Z. Lu, Y. Wang, W. Shi, L. Chrostowski, and N.A. Jaeger, "2x2 Broadband Adiabatic 3-dB Couplers on SOI Strip Waveguides for TE and TM modes", CLEO: 2015, STh1F.8 (2015).
    33.W. Bogaerts, and S.K. Selvaraja, "Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends", IEEE Photonics Journal 3(3), pp. 422-432 (2011).
    34.N. Zamhari, and A.A. Ehsan, "Large cross-section rib silicon-on-insulator (SOI) S-bend waveguide", Optik - International Journal for Light and Electron Optics 130, pp. 1414-1420 (2017).
    35.H. Zhou, J. Sun, J. Gao, J. Jiang, and Y. Zhou, "Design of compact and efficient polarization-insensitive taper coupler for SiGe photonic integration", Optics Express 24(21), pp. 23784-23797 (2016).
    36.K. Zang, C.-Y. Lu, X. Chen, E. Fei, M. Xue, S. Claussen, M. Morea, Y. Chen, R. Dutt, Y. Huo, T.I. Kamins, and J.S. Harris, "Germanium Quantum Well QCSE Waveguide Modulator With Tapered Coupling in Distributed Modulator–Detector System", Journal of Lightwave Technology 35(21), pp. 4629-4633 (2017).
    37.J. Gao, H. Zhou, J. Jiang, Y. Zhou, and J. Sun, "Design of low bias voltage Ge/SiGe multiple quantum wells electro-absorption modulator at 1550 nm", AIP Advances 7(3), 035317 (2017).
    38.M.S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, and L. Vivien, "Design of electroabsorption modulator based on Ge/SiGe multiple quantum wells, integrated on SOI waveguides", 2013 IEEE Photonics Conference, pp. 40-41 (2013).
    39.E.H. Edwards, L. Lever, E.T. Fei, T.I. Kamins, Z. Ikonic, J.S. Harris, R.W. Kelsall, and D.A.B. Miller, "Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon", Optics Express 21(1), pp. 867-876 (2013).
    40.L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M.G. Saber, M. Jacques, and D.V. Plant, "Polarization independent adiabatic 3-dB coupler for silicon-on-insulator", 2017 Conference on Lasers and Electro-Optics (CLEO), pp. 1-2 (2017).

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE