簡易檢索 / 詳目顯示

研究生: 陳若瑜
Chen, Ruo-Yu
論文名稱: CPAP參與在肝癌形成以及轉移之研究
Studying the role of CPAP in hepatocarcinogenesis and metastasis
指導教授: 洪良宜
Hung, Linag-Yi
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 92
中文關鍵詞: 中心體蛋白惡性肝癌轉移
外文關鍵詞: CPAP, HCC, Metastasis
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們先前發現,中心體蛋白Centrosomal P4.1-associated protein (CPAP)在肝癌細胞中會增加TNF-α誘導的NF-κB活化以及IL-6誘導的STAT3活化;在臨床分析,CPAP與血管入侵,術後復發以及腫瘤分級呈現正相關。因此,本研究想進一步探討CPAP在發炎誘導HCC形成以及惡化過程中所扮演的功能性角色。首先,當CPAP基因轉殖鼠處理DEN後,其ALT數值、肝臟細胞受損情況、促發炎因子表現以及NF-κB以及STAT3活化都會增加;CPAP也會增加DEN誘導的惡性肝腫瘤的生長。在臨床分析以及動物實驗結果看到,CPAP與肝癌腫瘤生長以及轉移是有正相關的。CPAP過度表現時也會提升腫瘤細胞爬行/入侵以及血管新生的能力。接著,在IL-6處理後,CPAP可以透過增加IL-6/STAT3活化進而調控細胞爬行和入侵的能力。在機制中,CPAP除了會增加STAT3的活化,亦會增加磷酸化的STAT3進入細胞核內。功能上,CPAP可以透過IL-6/STAT3/IL-8路徑來增強腫瘤細胞的血管新生能力;增加CD44的表現量;減少腫瘤抑制基因如PTEN以及MTSS1的表現。在帶有血管入侵特徵的HCC檢體中,CPAP mRNA表現與IL-8以及CD44 mRNA表現呈現正相關。這些結果表示CPAP是透過增加IL6/STAT3路徑來調控腫瘤細胞的惡化特性以導致肝癌轉移。

    Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer death worldwide. HCC is also associated with chronic liver inflammation. Our previous studies indicated that overexpressed CPAP contributes to the inflammatory microenvironment of HCC by increasing the NF-κB and STAT3 transcriptional activities. However, the functional role of CPAP in inflammation-mediated hepaticarcinogenesis and HCC progression remains unclear. Here, we found that CPAP enhances the diethylnitrosamine (DEN)-induced HCC formation and increases the HCC malignant features via increasing the IL-6-mediated STAT3 activity. The expression level of CPAP is positively correlated with IL-8 and CD44 in HCC tissues with vascular invasion. Taken together, our study indicated that CPAP promotes the development and progression of HCC via enhancing the IL-6/STAT3 pathway.
    Key words: CPAP, HCC, Metastasis

    Chinese Abstract (中文摘要)............................... I Abstract................................................ II Acknowledgements........................................ IV Table of Contents........................................ V Contents of Tables....................................... X Contents of Figures..................................... XI Abbreviation List....................................... XV Chapter 1 Introduction................................... 1 1-1 Inflammation is an important hallmark of cancer.. 1 1-2 Hepatocellular carcinoma (HCC) and its therapeutic efficiency............................................... 1 1-3 HCC and angiogenesis............................. 3 1-4 NF-κB and STAT3 are two major inflammatory signaling pathways in the development and progression of HCC...................................................... 4 1-5 Centrosomal P4.1-associated protein (CPAP)....... 5 1-6 CPAP contributes to the acitvation of TNF-α/ NF-κB in HCC................................................... 6 1-7 Research Objectives.............................. 8 Chapter 2 Materials and Methods.......................... 9 2-1 Materials........................................ 9 2-2 Methods......................................... 15 2-2-1 Low doses of DEN-induced acute liver inflammation and high doses of DEN-induced animal model............. 15 2-2-2 Generation of albumin-CPAP transgenic mice and determination of the genotype........................... 15 2-2-3 Determination of ALT value...................... 16 2-2-4 Western blot analysis........................... 16 2-2-5 RNA extraction, reverse transcription and real-time PCR..................................................... 16 2-2-6 Cell culture.................................... 17 2-2-7 IL-6 and TNF-α treatment........................ 17 2-2-8 Collection of conditioned medium................ 17 2-2-9 Plasmid transfection and reporter gene assay.... 18 2-2-10 Fractionation of nuclear and cytosolic extracts. 18 2-2-11 Co-immunoprecipitation assay.................... 19 2-2-12 Migration / invasion assay...................... 19 2-2-13 HUVECs migration assay / Tube formation of HUVECs assay................................................... 20 2-2-14 siRNA and shRNA transfection.................... 20 2-2-15 Tumor metastasis RT2 PCR array.................. 20 2-2-16 The expression of CPAP in human cancers......... 21 2-2-17 Orthotopic mouse model of hepatocellular carcinoma............................................... 22 2-2-18 Mouse model of intrasplenic injection........... 22 2-2-19 Statistical analysis............................ 22 Chapter 3 Results....................................... 24 3-1 Overexpression of CPAP in mice liver enhances DEN-induced acute inflammatory response through NF-κB and STAT3 singaling............................................... 24 3-2 CPAP overexpression enhances DEN-indcured hepatocarcinogenesis.................................... 25 3-3 CPAP is involved in the growth and metastasis of HCC..................................................... 26 3-3-1 Overexpression of CPAP increases liver tumor growth and HCC metastasis...................................... 26 3-3-2 Overexpression of CPAP promotes HCC metastasis in an intra-splenic injection model........................ 27 3-4 Overexpression of CPAP increases malignant features of HCC cell through IL-6/STAT3 signaling................ 28 3-4-1 Overexpression of CPAP increases HCC cell migration and invasion............................................ 28 3-4-2 Overexpression of CPAP increases the malignant features of HCC cell through IL-6/STAT3 signaling....... 28 3-5 CPAP is requied for IL-6/STAT3 activation in HCC..................................................... 29 3-5-1 Overexpression of CPAP increases IL-6/STAT3 signaling transcriptional activity...................... 29 3-5-2 IL-6 increases the nuclear translocation of both CPAP and STAT3.......................................... 29 3-6 CPAP increases the angiogenic ability of HCC cells via IL6/STAT3/IL-8 signaling, and is positively correlated with expression of IL-8 upon vascular invasion in HCC... 30 3-6-1 CPAP overexpressing HCC cells increases IL-6/STAT3-mediated recruitment and tube formation of HUVECs and angiogenesis in a matrigel plug tumor................... 30 3-6-2 IL-8 is a downstream effector of CPAP-mediated angiogenic ability in HCC cells......................... 31 3-6-3 Overexpression of CPAP increases the expression of IL-8 in plug tumors and liver tumor with lung metastasis.............................................. 32 3-6-4 There is a positive correlation between CPAP and IL-8 in HCC with vascular invasion...................... 32 3-7 CPAP increases the expression of STAT3 target genes involved in metastasis.................................. 33 3-7-1 Oeverexpression of CPAP increases other metastatic genes in HCC cells...................................... 33 3-7-2 A positive correlation was found between CPAP and two metastatic genes in HCC............................. 33 3-7-3 A negative correlation weas found between CPAP and tumor suppressor genes in HCC........................... 34 Chapter 4 Discussion.................................... 36 4-1 The effect of CPAP in inflammation-induced hepatocytes death and maintenance....................... 36 4-2 CPAP is involved in inflammation –mediated hepatocarcinogenesis.................................... 37 4-3 CPAP plays an important role in the development and progression of HCC...................................... 38 4-4 CPAP is required for the IL-6/STAT3-mediated malignant features of HCC............................... 39 4-5 CPAP enhances IL-6/STAT3 transcriptional activity in HCC.................................................. 39 4-6 CPAP contributes to angiogenesis via IL-6/STAT3/IL-8 signaling............................................. 40 4-7 The correlation between CPAP and IL8 in HCC with vascular invasion....................................... 41 4-8 Another functional role of CPAP in the malignant progression of HCC via IL6/STAT3 signaling.............. 41 4-9 The inhibitor of blocking CPAP and STAT3 interaction as a potential therapeutic strategy in HCC.. 43 References.............................................. 45 Tables.................................................. 51 Figures................................................. 55 Appendices.............................................. 88 Related paper Publication............................... 92

    1. Andersen, J.B., and Thorgeirsson, S.S. A perspective on molecular therapy in cholangiocarcinoma: present status and future directions. Hepatology Oncology 1, 143-157, 2014.
    2. Asakawa, M., Kono, H., Amemiya, H., Matsuda, M., Suzuki, T., Maki, A., and Fujii, H. Role of interleukin-18 and its receptor in hepatocellular carcinoma associated with hepatitis C virus infection. International Journal of Cancer 118, 564-570, 2006.
    3. Badawi, M., Kim, J., Dauki, A., Sutaria, D., Motiwala, T., Reyes, R., Wani, N., Kolli, S., Jiang, J., Coss, C.C., Jacob, S.T., Phelps, M.A., and Schmittgen, T.D. CD44 positive and sorafenib insensitive hepatocellular carcinomas respond to the ATP-competitive mTOR inhibitor INK128. Oncotarget 9, 26032-26045, 2018.
    4. Bollrath, J., and Greten, F.R. IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. European Molecular Biology Organization Reports 10, 1314-1319, 2009.
    5. Bond, J., Roberts, E., Springell, K., Lizarraga, S.B., Scott, S., Higgins, J., Hampshire, D.J., Morrison, E.E., Leal, G.F., Silva, E.O., Costa, S.M., Baralle, D., Raponi, M., Karbani, G., Rashid, Y., Jafri, H., Bennett, C., Corry, P., Walsh, C.A., and Woods, C.G. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nature Genetics 37, 353-355, 2005.
    6. Borghouts, C., Delis, N., Brill, B., Weiss, A., Mack, L., Lucks, P., and Groner, B. A membrane penetrating peptide aptamer inhibits STAT3 function and suppresses the growth of STAT3 addicted tumor cells. JAK-STAT 1, 44-54, 2012.
    7. Chow, M.T., and Luster, A.D. Chemokines in cancer. Cancer Immunology Research 2, 1125-1131, 2014.
    8. Coussens, L.M., and Werb, Z. Inflammation and cancer. Nature 420, 860-867, 2002.
    9. Crusz, S.M., and Balkwill, F.R. Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology 12, 584-596, 2015.
    10. Dvorak, H.F. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. American Journal of Pathology 162, 1747-1757, 2003.
    11. El-Serag, H.B. Current concepts: hepatocellular carcinoma. New England Journal of Medicine 365, 1118-1127, 2011.
    12. Fan, H., Chen, L., Zhang, F., Quan, Y., Su, X., Qiu, X., Zhao, Z., Kong, K.L., Dong, S., Song, Y., Chan, T.H., and Guan, X.Y. MTSS1, a novel target of DNA methyltransferase 3B, functions as a tumor suppressor in hepatocellular carcinoma. Oncogene 31, 2298-2308, 2012.
    13. Fan, Y., Mao, R., and Yang, J. NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4, 176-185, 2013.
    14. Gao, Y., Ruan, B., Liu, W., Wang, J., Yang, X., Zhang, Z., Li, X., Duan, J., Zhang, F., Ding, R., Tao, K., and Dou, K. Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget 6, 7828-7837, 2015.
    15. He, G., and Karin, M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Research 21, 159-168, 2011.
    16. Huang, X.Y., Huang, Z.L., Xu, B., Chen, Z., Re, T.J., Zheng, Q., Tang, Z.Y., and Huang, X.Y. Elevated MTSS1 expression associated with metastasis and poor prognosis of residual hepatitis B-related hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research 35, 85, 2016.
    17. Hung, L.Y., Tang, C.J., and Tang, T.K. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Molecular and Cellular Biology 20, 7813-7825, 2000.
    18. Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harbor Perspectives in Biology 1, a000141, 2009.
    19. Komposch, K., and Sibilia, M. EGFR Signaling in Liver Diseases. International Journal of Molecular Sciences 17, 30, 2016.
    20. Koyanagi, M., Hijikata, M., Watashi, K., Masui, O., and Shimotohno, K. Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappaB. Journal of Biological Chemistry 280, 12430-12437, 2005.
    21. Kubo, F., Ueno, S., Hiwatashi, K., Sakoda, M., Kawaida, K., Nuruki, K., and Aikou, T. Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Annals of Surgical Oncology 12, 800-807, 2005.
    22. Lee M.H. Investigating the role of CPAP in HBx mediated hepatocarcinogenesis. Master's Thesis, National Cheng Kung University, 2014.
    23. Li, A., Dubey, S., Varney, M.L., Dave, B.J., and Singh, R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology 170, 3369-3376, 2003.
    24. Li, A., Varney, M.L., Valasek, J., Godfrey, M., Dave, B.J., and Singh, R.K. Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8, 63-71, 2005.
    25. Liu, L., Chen, H., Wang, M., Zhao, Y., Cai, G., Qi, X., and Han, G. Combination therapy of sorafenib and TACE for unresectable HCC: a systematic review and meta-analysis. PLoS One 9, e91124, 2014.
    26. Luo, Y., and Tan, Y. Prognostic value of CD44 expression in patients with hepatocellular carcinoma: meta-analysis. Cancer Cell International 16, 47, 2016.
    27. McFarland, B.C., Gray, G.K., Nozell, S.E., Hong, S.W., and Benveniste, E.N. Activation of the NF-kappaB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Molecular Cancer Research 11, 494-505, 2013.
    28. McGlynn, K.A., and London, W.T. Epidemiology and natural history of hepatocellular carcinoma. Best Practice and Research Clinical Gastroenterology 19, 3-23, 2005.
    29. McGlynn, K.A., and London, W.T. The global epidemiology of hepatocellular carcinoma: present and future. Clinical Liver Disease 15, 223-243, 2011.
    30. Meng, F., Zhang, S., Song, R., Liu, Y., Wang, J., Liang, Y., Wang, J., Han, J., Song, X., Lu, Z., Yang, G., Pan, S., Li, X., Liu, Y., Zhou, F., Wang, Y., Cui, Y., Zhang, B., Ma, K., Zhang, C., Sun, Y., Xin, M., and Liu, L. NCAPG2 overexpression promotes hepatocellular carcinoma proliferation and metastasis through activating the STAT3 and NF-kappaB/miR-188-3p pathways. EBioMedicine 44, 237-249, 2019.
    31. Naugler, W.E., Sakurai, T., Kim, S., Maeda, S., Kim, K., Elsharkawy, A.M., and Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121-124, 2007.
    32. Nikolaou, K., Sarris, M., and Talianidis, I. Molecular pathways: the complex roles of inflammation pathways in the development and treatment of liver cancer. Clinical Cancer Research 19, 2810-2816, 2013.
    33. Park, H.J., Choi, B.I., Lee, E.S., Park, S.B., and Lee, J.B. How to Differentiate Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis on Imaging Diagnosis. Liver Cancer 6, 189-203, 2017a.
    34. Park, I.H., Yang, H.N., Lee, K.J., Kim, T.S., Lee, E.S., Jung, S.Y., Kwon, Y., and Kong, S.Y. Tumor-derived IL-18 induces PD-1 expression on immunosuppressive NK cells in triple-negative breast cancer. Oncotarget 8, 32722-32730, 2017b.
    35. Peng, B., Sutherland, K.D., Sum, E.Y., Olayioye, M., Wittlin, S., Tang, T.K., Lindeman, G.J., and Visvader, J.E. CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity. Molecular Endocrinology 16, 2019-2033, 2002.
    36. Qiao, Y., Qian, Y., Wang, J., and Tang, X. Melanoma cell adhesion molecule stimulates yes-associated protein transcription by enhancing CREB activity via c-Jun/c-Fos in hepatocellular carcinoma cells. Oncology Letters 11, 3702-3708, 2016.
    37. Quesnelle, K.M., Boehm, A.L., and Grandis, J.R. STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry 102, 311-319, 2007.
    38. Ren, Y., Poon, R.T., Tsui, H.T., Chen, W.H., Li, Z., Lau, C., Yu, W.C., and Fan, S.T. Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clinical Cancer Research 9, 5996-6001, 2003.
    39. Sanz-Cameno, P., Trapero-Marugan, M., Chaparro, M., Jones, E.A., and Moreno-Otero, R. Angiogenesis: from chronic liver inflammation to hepatocellular carcinoma. Journal of Oncology 2010, 272170, 2010.
    40. Schlaeger, C., Longerich, T., Schiller, C., Bewerunge, P., Mehrabi, A., Toedt, G., Kleeff, J., Ehemann, V., Eils, R., Lichter, P., Schirmacher, P., and Radlwimmer, B. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47, 511-520, 2008.
    41. Schraufstatter, I.U., Chung, J., and Burger, M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. American Journal of Physiology-Lung Cellular and Molecular Physiology 280, L1094-1103, 2001.
    42. Schwabe, R.F., and Brenner, D.A. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. American Journal of Physiology-Gastrointestinal and Liver Physiology 290, G583-589, 2006.
    43. Siddiquee, K., Zhang, S., Guida, W.C., Blaskovich, M.A., Greedy, B., Lawrence, H.R., Yip, M.L., Jove, R., McLaughlin, M.M., Lawrence, N.J., Sebti, S.M., and Turkson, J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proceedings of the National Academy of Sciences of the United States of America 104, 7391-7396, 2007.
    44. Simpson, K.J., Henderson, N.C., Bone-Larson, C.L., Lukacs, N.W., Hogaboam, C.M., and Kunkel, S.L. Chemokines in the pathogenesis of liver disease: so many players with poorly defined roles. Clinical Science 104, 47-63, 2003.
    45. Siveen, K.S., Sikka, S., Surana, R., Dai, X., Zhang, J., Kumar, A.P., Tan, B.K., Sethi, G., and Bishayee, A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochimica et Biophysica Acta -Reviews on Cancer 1845, 136-154, 2014.
    46. Tang, C.J., Fu, R.H., Wu, K.S., Hsu, W.B., and Tang, T.K. CPAP is a cell-cycle regulated protein that controls centriole length. Nature Cell Biology 11, 825-831, 2009.
    47. Tolba, R., Kraus, T., Liedtke, C., Schwarz, M., and Weiskirchen, R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Laboratory Animals 49, 59-69, 2015.
    48. Villanueva, A., and Luedde, T. The transition from inflammation to cancer in the liver. Clinical Liver Disease (Hoboken) 8, 89-93, 2016.
    49. Wang, J., Li, J., Shen, J., Wang, C., Yang, L., and Zhang, X. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BioMed Central Cancer 12, 227, 2012.
    50. Wang, J., Tang, X., Weng, W., Qiao, Y., Lin, J., Liu, W., Liu, R., Ma, L., Yu, W., Yu, Y., Pan, Q., and Sun, F. The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma. Oncogene 34, 5781-5795, 2015.
    51. Wang, Q., Yu, W.N., Chen, X., Peng, X.D., Jeon, S.M., Birnbaum, M.J., Guzman, G., and Hay, N. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell 29, 523-535, 2016.
    52. Waugh, D.J., and Wilson, C. The interleukin-8 pathway in cancer. Clinical Cancer Research 14, 6735-6741, 2008.
    53. Weber, A., Boege, Y., Reisinger, F., and Heikenwalder, M. Chronic liver inflammation and hepatocellular carcinoma: persistence matters. Swiss Medical Weekly 141, w13197, 2011.
    54. Weber, A., Borghouts, C., Delis, N., Mack, L., Brill, B., Bernard, A.C., Coqueret, O., and Groner, B. Inhibition of Stat3 by peptide aptamer rS3-PA enhances growth suppressive effects of irinotecan on colorectal cancer cells. Hormone Molecular Biology and Clinical Investigation 10, 273-279, 2012.
    55. Welling, T.H., Fu, S., Wan, S., Zou, W., and Marrero, J.A. Elevated serum IL-8 is associated with the presence of hepatocellular carcinoma and independently predicts survival. Cancer Investigation 30, 689-697, 2012.
    56. Weng, C.Y. Functional characterication of CPAP in IL6/STAT3 pathway. Master's Thesis, National Cheng Kung University, 2016.
    57. Wu, W.Y., Li, J., Wu, Z.S., Zhang, C.L., and Meng, X.L. STAT3 activation in monocytes accelerates liver cancer progression. BioMed Central Cancer 11, 506, 2011.
    58. Yang, S.F., Wang, S.N., Wu, C.F., Yeh, Y.T., Chai, C.Y., Chunag, S.C., Sheen, M.C., and Lee, K.T. Altered p-STAT3 (tyr705) expression is associated with histological grading and intratumour microvessel density in hepatocellular carcinoma. Journal of Clinical Pathology 60, 642-648, 2007.
    59. Yang, S.T., Yen, C.J., Lai, C.H., Lin, Y.J., Chang, K.C., Lee, J.C., Liu, Y.W., Chang-Liao, P.Y., Hsu, L.S., Chang, W.C., Hung, W.C., Tang, T.K., Liu, Y.W., and Hung, L.Y. SUMOylated CPAP is required for IKK-mediated NF-kappaB activation and enhances HBx-induced NF-kappaB signaling in HCC. Journal of Hepatology 58, 1157-1164, 2013.
    60. Zheng, X., Ramani, A., Soni, K., Gottardo, M., Zheng, S., Ming Gooi, L., Li, W., Feng, S., Mariappan, A., Wason, A., Widlund, P., Pozniakovsky, A., Poser, I., Deng, H., Ou, G., Riparbelli, M., Giuliano, C., Hyman, A.A., Sattler, M., Gopalakrishnan, J., and Li, H. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nature Communications 7, 11874, 2016.

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE