簡易檢索 / 詳目顯示

研究生: 卓佳妤
Cho, Chia-Yu
論文名稱: 交流磁場對磁性與螢光雙功能雙邊不對稱球體之操控研究
AC Magnetic Field Manipulation to Magnetic-Fluorescent Bifunctional Janus Particles
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 133
中文關鍵詞: 磁性雙邊不對稱球體交流磁場螢光旋轉頻率磁敏感度
外文關鍵詞: magnetic Janus particles, alternating current magnetic field, fluorescence, rotational frequency, magnetic sensitivity
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以直徑為480奈米且具有多孔表面的二氧化矽顆粒作為製造雙邊不對稱球體的核心材料。利用螢光染料使雙邊不對稱球體的一個半球具有螢光特性,另一個半球則以磁性奈米顆粒在孔洞中進行改質。利用雙邊不對稱球體的磁性/螢光異向性,在交流磁場下操控雙邊不對稱球體的旋轉運動並根據周期性螢光進行光學監測。此研究結合交流電函數產生器、示波器、光源以及光感測器作為實驗室自製的系統,以分析來自可調變交流磁場產生之雙邊不對稱球體的旋轉運動和光信號。同時,也利用快速傅立葉轉換的方法來呈現響應的旋轉頻率和頻率相位差。
    此系統引入雙軸磁場作為驅動雙邊不對稱球體旋轉的兩種刺激源。交流磁場為雙邊不對稱球體旋轉提供旋轉力,而靜磁場則提供雙邊不對稱球體的磁化方向,作為在交流磁場較弱時球體旋轉的回復力。為了全面討論480奈米雙邊不對稱球體在交流磁場操控下的旋轉運動,必須考慮溶液介質的影響、球體旋轉的驅動力以及球體之間的距離等因素。最終目標是研究在此系統中旋轉的雙邊不對稱球體的敏感度和外部交流磁場及靜磁場的函數關係,以及旋轉的雙邊不對稱球體是否具有特定的旋轉共振頻率。

    Silica particles with 480nm in diameters and porous surface were used as the core materials for the fabrication of Janus particles containing one hemisphere functionalized with fluorescent dyes and another hemisphere modified with magnetic nanoparticles in the pores. The anisotropic property of magnetic/fluorescent Janus particles was utilized to manipulate the rotational motion of Janus particles under the alternating current (AC) magnetic field and the optical monitoring from periodical fluorescence emission. This research work combined an AC function generator, an oscilloscope, a light source and a photodetector as a lab-made system to analyze the rotations of the Janus particles from the tunable AC magnetic field and the optical signals. Meanwhile, the fast Fourier transform was also utilized to reveal the responded rotation frequency and the frequency phase.
    This system introduced a biaxial magnetic field as two magnetic stimulations for driving Janus particles rotation motions. Alternating current (AC) magnetic field provided the rotating force for particles rotation, and static magnetic field (SMF) provided the magnetization direction of the particles, which acted as the returning force to the particle rotation during the weak AC magnetic field. For the purpose of comprehensively discussing the rotation motion of 480nm Janus particles under AC magnetic field manipulation, including the influence of the solution mediums, the driving force to the particle rotations, and the distance between the particles must be considered. The ultimate goal is to study the sensitivity of the rotating Janus particles in this system as functions of the applied external AC and SMF magnetic fields and whether the rotating Janus particles have a specific rotational resonance frequency.

    中文摘要 II Abstract III 致謝 V Table of Contents VI List of Tables X List of Illustrations XII Chapter 1 Introduction 1 1.1 Janus Particles and Asymmetric micro- and nano-Materials 1 1.1.1 Janus-like Materials 3 1.1.2 Fabrication of Janus Particles 4 One-dimensional Electrospun Fibers as Particles Embedding Substrates 16 1.1.3 Applications 18 1.2 Alternating Magnetic Field 23 1.2.1 Electromagnet (Magnetic Coil) 23 1.2.2 AC Magnetic Field Impedance 25 1.2.3 Applications of Alternating Current Magnetic Field 25 1.3 Manipulation of Janus Particles by External Magnetic Field 27 1.3.1 Magnetic Field Induced Self-Assembly 27 1.3.2 Particles Orientation in a Suspended Medium 29 1.3.3 Anisotropic Optical Properties 32 1.3.4 Applications of Magnetically-driven Janus Particles 35 1.4 Magnetic-sensing and Magnetoreception 38 1.5 Theoretical Basis 39 1.5.1 Anisotropic Fluorescence Emission for Tracking Particle Rotation 39 1.5.2 The Concept of Theoretical Brownian Rotation Frequency 39 1.5.3 The Reference of Experimental Setup 40 Chapter 2 Motivation 41 Chapter 3 Experimental 43 3.1 Chemicals 43 3.2 Instruments 45 3.3 Magnetic-Fluorescence Surface Porous Janus Particles Preparation 47 3.3.1 Preclean of 480nm Silica Particles 47 3.3.2 Fabrication of Surface Porous Silica Particles 47 3.3.3 Amino Sol-gel Reaction 47 3.3.4 Fabrication of Fluorescence Surface Porous Silica Particles 48 3.3.5 Electrospinning of PMMA/P4VP Blend Fibers 49 3.3.6 Fluorescence Surface Porous Silica Particles Adsorption 49 3.3.7 Isothermal Heat Treatment for Particles Embedding 50 3.3.8 The process of TEOS protection layer 50 3.3.9 The Process of Wax Protection layer 51 3.3.10 PMMA/P4VP Fibers Dissolving Process 51 3.3.11 Fabrication of Magnetic Surface Porous Silica Particles 51 3.3.12 Dewaxing Process 52 3.4 Analytical Instrument 53 3.4.1 Dynamic Light Scattering (DLS) 53 3.4.2 Zeta-Potential Measurement 53 3.4.3 Optical Microscope (OM) 54 3.4.4 Scanning Electron Microscopy (SEM) 55 3.4.5 UV-visible Spectrometer 55 3.4.6 Photoluminescence Spectroscopy (PL). 56 doi:10.6844/NCKU202003021 3.4.7 Photoluminescence Optical System 57 3.4.8 Photodetector 58 3.5 Biaxial Magnetic Field Manipulation 59 3.5.1 Erection of The Entire System 59 3.5.2 The Adjustment Method of SMF and AC Magnetic Field Strength 61 3.5.3 Signal Processing Method 67 Chapter 4 Result and Discussion 68 4.1 Synthesis of Surface Porous Silica Particles 68 4.1.1 Surface-Protected Etching Process 68 4.1.2 Influence of Reaction Time on Etching Process 69 4.2 Fabrication of Bifunctional Magnetic-Fluorescence Janus Particles 72 4.2.1 Surface Porous Silica Particle Modified with Atlantic Blue Dye 72 4.2.2 IEP Measurement of Full AB Surface Porous Silica Particles 73 4.2.3 Full AB Surface Porous Silica Particles Adsorption 74 4.2.4 TEOS and Wax Protection Layer via CVD Process 78 4.2.5 Magnetic Nanoparticles Filling in Process (Fe3O4 Synthesis) 80 4.2.6 Dye Functionalization and Optical Properties 82 4.3 Dynamic Motions in Magnetic Field 84 4.3.1 Magnetic Janus Particles Alignment 84 4.3.2 Magnetic Janus Particles Rotation Behavior 88 4.4 Analysis of Magnetic-Fluorescence Janus Particles Rotation Motion under Biaxial Magnetic Field 98 4.4.1 The Response to Biaxial Magnetic Field 98 4.4.2 Factors Affect Particles Rotation Behavior 103 4.4.3 Sensitivity of Magnetic Janus Particles to External Magnetic Field 120 4.4.4 Applications 126 Chapter 5 Conclusions 127 Chapter 6 Reference 128

    1. GENNES, P.-G. D., Nobel Lecture. Soft Matter 1991, 21 (7), 842-845.
    2. Cho, I.; Lee, K.-W., Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903-1926.
    3. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., Janus Beads - Realization and Behavior at Water Oil Interfaces. Europhysics Letters 1989, 9 (3), 251-255.
    4. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36).
    5. Walther, A.; Mueller, A. H. E., Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. (Washington, DC, U. S.) 2013, 113 (7), 5194-5261.
    6. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286-308.
    7. Hawker, C. J., “Living” Free Radical Polymerization:  A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of Chemical Research 1997, 30 (9), 373-382.
    8. Erhardt, R.; Böker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz, V.; Müller, A. H. E., Janus Micelles†. Macromolecules 2001, 34 (4), 1069-1075.
    9. Xu, H.; Erhardt, R.; Abetz, V.; Müller, A. H. E.; Goedel, W. A., Janus Micelles at the Air/Water Interface. Langmuir 2001, 17 (22), 6787-6793.
    10. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L., Non-centrosymmetric superlattices in block copolymer blends. Nature 1999, 398 (6723), 137-139.
    11. Abetz, V. G., T., Formation of superlattices via blending of blockcopolymers. Rapid communications 2000, 21 (1), 16-34.
    12. Vilain, C.; Goettmann, F.; Moores, A.; Le Floch, P.; Sanchez, C., Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles. Journal of Materials Chemistry 2007, 17 (33).
    13. Jakobs, R. T. M.; van Herrikhuyzen, J.; Gielen, J. C.; Christianen, P. C. M.; Meskers, S. C. J.; Schenning, A. P. H. J., Self-assembly of amphiphilic gold nanoparticles decorated with a mixed shell of oligo(p-phenylene vinylene)s and ethyleneoxide ligands. Journal of Materials Chemistry 2008, 18 (29).
    14. Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H., Scalable Routes to Janus Au−SiO2 and Ternary Ag−Au−SiO2 Nanoparticles. Chemistry of Materials 2010, 22 (13), 3826-3828.
    15. He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. J Colloid Interface Sci 2007, 306 (2), 296-9.
    16. Pawar, A. B.; Kretzschmar, I., Multifunctional patchy particles by glancing angle deposition. Langmuir 2009, 25 (16), 9057-63.
    17. Hong, L.; Jiang, S.; Granick, S., Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006, 22 (23), 9495-9499.
    18. Pickering, S. U., CXCVI.—Emulsions. J. Chem. Soc., Trans. 1907, 91 (0), 2001-2021.
    19. Ramsden, D. W., Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proceedings of the Royal Society of London 1997, 72 (477-486), 156-164.
    20. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials 2005, 17 (16), 2014-2018.
    21. Li, Z. F.; Lee, D. Y.; Rubner, M. F.; Cohen, R. E., Layer-by-layer assembled janus microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    22. Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir 2004, 20 (22), 9594-9.
    23. Paunov, V. N.; Cayre, O. J., Supraparticles and“Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (910), 788-791.
    24. Cui, J.-Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
    25. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System. Advanced Materials 2006, 18 (9), 1152-1156.
    26. Nisisako, T.; Torii, T., Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles. Advanced Materials 2007, 19 (11), 1489-1493.
    27. Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nat Mater 2005, 4 (10), 759-63.
    28. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683-8.
    29. Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-6.
    30. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS Appl Mater Interfaces 2010, 2 (11), 3185-91.
    31. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). Journal of Magnetism and Magnetic Materials 2005, 293 (1), 663-670.
    32. Howse, J. R.; Jones, R. A.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev Lett 2007, 99 (4), 048102.
    33. Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures. Nat Mater 2007, 6 (8), 557-62.
    34. Su, H.; Hurd Price, C. A.; Jing, L.; Tian, Q.; Liu, J.; Qian, K., Janus particles: design, preparation, and biomedical applications. Materials Today Bio 2019, 4, 100033.
    35. Yi, Y.; Sanchez, L.; Gao, Y.; Yu, Y., Janus particles for biological imaging and sensing. Analyst 2016, 141 (12), 3526-39.
    36. Walther, A.; Matussek, K.; Muller, A. H., Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles. ACS Nano 2008, 2 (6), 1167-78.
    37. Xuan, M.; Wu, Z.; Shao, J.; Dai, L.; Si, T.; He, Q., Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J Am Chem Soc 2016, 138 (20), 6492-7.
    38. Creighton, M. A.; Ohata, Y.; Miyawaki, J.; Bose, A.; Hurt, R. H., Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties. Langmuir 2014, 30 (13), 3687-96.
    39. Xu, F.; Fang, Z.; Yang, D.; Gao, Y.; Li, H.; Chen, D., Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS Appl Mater Interfaces 2014, 6 (9), 6717-23.
    40. Zhang, M.; Ngo, T. H.; Rabiah, N. I.; Otanicar, T. P.; Phelan, P. E.; Swaminathan, R.; Dai, L. L., Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization. Langmuir 2014, 30 (1), 75-82.
    41. Binks, B. P.; Fletcher, P. D. I., Particles Adsorbed at the Oil−Water Interface:  A Theoretical Comparison between Spheres of Uniform Wettability and “Janus” Particles. Langmuir 2001, 17 (16), 4708-4710.
    42. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20).
    43. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv Mater 2010, 22 (10), 1060-71.
    44. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. J Chem Phys 2007, 127 (16), 161102.
    45. Yu, C.; Zhang, J.; Granick, S., Selective Janus particle assembly at tipping points of thermally-switched wetting. Angew Chem Int Ed Engl 2014, 53 (17), 4364-7.
    46. Wittmeier, A.; Holterhoff, A. L.; Johnson, J.; Gibbs, J. G., Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy. Langmuir 2015, 31 (38), 10402-10.
    47. Anthony, S. M.; Kim, M.; Granick, S., Single-Particle Tracking of Janus Colloids in Close Proximity. Langmuir 2008, 24 (13), 6557-6561.
    48. Honegger, T.; Lecarme, O.; Berton, K.; Peyrade, D., 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectronic Engineering 2010, 87 (5), 756-759.
    49. Li, J.; Shklyaev, O. E.; Li, T.; Liu, W.; Shum, H.; Rozen, I.; Balazs, A. C.; Wang, J., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett 2015, 15 (10), 7077-85.
    50. Moerland, C. P.; van, I. L. J.; Prins, M. W. J., Rotating magnetic particles for lab-on-chip applications - a comprehensive review. Lab Chip 2019, 19 (6), 919-933.
    51. Ivkov, R.; DeNardo, S. J.; Daum, W.; Foreman, A. R.; Goldstein, R. C.; Nemkov, V. S.; DeNardo, G. L., Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res 2005, 11 (19 Pt 2), 7093s-7103s.
    52. Erb, R. M.; Jenness, N. J.; Clark, R. L.; Yellen, B. B., Towards holonomic control of Janus particles in optomagnetic traps. Adv Mater 2009, 21 (47), 4825-9.
    53. Kim, S.-H.; Sim, J. Y.; Lim, J.-M.; Yang, S.-M., Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion. Angew. Chem., Int. Ed. 2010, 49 (22), 3786-3790, S3786/1-S3786/5.
    54. Bong, K. W.; Chapin, S. C.; Doyle, P. S., Magnetic Barcoded Hydrogel Microparticles for Multiplexed Detection. Langmuir 2010, 26 (11), 8008-8014.
    55. Dyab, A. K. F.; Ozmen, M.; Ersoz, M.; Paunov, V. N., Fabrication of novel anisotropic magnetic microparticles. Journal of Materials Chemistry 2009, 19 (21).
    56. Osterman, N.; Poberaj, I.; Dobnikar, J.; Frenkel, D.; Ziherl, P.; Babic, D., Field-induced self-assembly of suspended colloidal membranes. Phys Rev Lett 2009, 103 (22), 228301.
    57. Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P., Universality in Colloid Aggregation. Nature 1989, 339 (6223), 360-362.
    58. Yuet, K. P.; Hwang, D. K.; Haghgooie, R.; Doyle, P. S., Multifunctional Superparamagnetic Janus Particles. Langmuir 2010, 26 (6), 4281-4287.
    59. Ruditskiy, A.; Ren, B.; Kretzschmar, I., Behaviour of iron oxide (Fe3O4) Janus particles in overlapping external AC electric and static magnetic fields. Soft Matter 2013, 9 (38).
    60. Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 1905, 322 (8), 549-560.
    61. Anthony, S. M.; Hong, L.; Kim, M.; Granick, S., Single-particle colloid tracking in four dimensions. Langmuir 2006, 22 (24), 9812-5.
    62. Gao, Y.; Yu, Y.; Sanchez, L.; Yu, Y., Seeing the unseen: Imaging rotation in cells with designer anisotropic particles. Micron 2017, 101, 123-131.
    63. McNaughton, B. H.; Kinnunen, P.; Shlomi, M.; Cionca, C.; Pei, S.-N.; Clarke, R.; Argyrakis, P.; Kopelman, R., Experimental System for One-Dimensional Rotational Brownian Motion. J. Phys. Chem. B 2011, 115 (18), 5212-5218.
    64. Muinonen, K.; Lagerros, J. S. V., Inversion of shape statistics for small solar system bodies. Astron Astrophys 1998, 333 (2), 753-761.
    65. Lee, K.; Yi, Y.; Yu, Y., Remote Control of T Cell Activation Using Magnetic Janus Particles. Angew Chem Int Ed Engl 2016, 55 (26), 7384-7.
    66. Yin, S. N.; Wang, C. F.; Yu, Z. Y.; Wang, J.; Liu, S. S.; Chen, S., Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv Mater 2011, 23 (26), 2915-9.
    67. Baraban, L.; Makarov, D.; Streubel, R.; Monch, I.; Grimm, D.; Sanchez, S.; Schmidt, O. G., Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 2012, 6 (4), 3383-9.
    68. Le, M. Q.; Capsal, J. F.; Galineau, J.; Ganet, F.; Yin, X.; Yang, M. D.; Chateaux, J. F.; Renaud, L.; Malhaire, C.; Cottinet, P. J.; Liang, R., All-organic electrostrictive polymer composites with low driving electrical voltages for micro-fluidic pump applications. Sci Rep 2015, 5, 11814.
    69. Sagebiel, S.; Stricker, L.; Engel, S.; Ravoo, B. J., Self-assembly of colloidal molecules that respond to light and a magnetic field. Chem. Commun. (Cambridge, U. K.) 2017, 53 (67), 9296-9299.
    70. Teshima, M.; Seki, T.; Takeoka, Y., Simple preparation of magnetic field-responsive structural colored Janus particles. Chem Commun (Camb) 2018, 54 (21), 2607-2610.
    71. Clark, N. J. J. R. M. E. B. B. Y. R. L., Magnetic and optical manipulation of spherical metal-coated Janus particles. Proc. of SPIE 2010, 7762, 14.
    72. Zong, Y.; Liu, J.; Liu, R.; Guo, H.; Yang, M.; Li, Z.; Chen, K., An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings. ACS Nano 2015, 9 (11), 10844-10851.
    73. Cao, Q.; Fan, Q.; Chen, Q.; Liu, C.; Han, X.; Li, L., Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Materials Horizons 2020, 7 (3), 638-666.
    74. Goovaerts, R.; Van Assche, T.; Sonck, M.; Denayer, J.; Desmet, G., A micromixer with consistent mixing performance for a wide range of flow rates. Electrophoresis 2015, 36 (3), 405-12.
    75. Gao, Y.; van Reenen, A.; Hulsen, M. A.; de Jong, A. M.; Prins, M. W. J.; den Toonder, J. M. J., Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluidics and Nanofluidics 2013, 16 (1-2), 265-274.
    76. Yu, H.; Nguyen, T.-B.; Ng, S. H.; Tran, T., Mixing control by frequency variable magnetic micropillar. RSC Advances 2016, 6 (14), 11822-11828.
    77. Ranzoni, A.; Schleipen, J. J.; van Ijzendoorn, L. J.; Prins, M. W., Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules. Nano Lett 2011, 11 (5), 2017-22.
    78. Wiltschko, R.; Wiltschko, W., Magnetoreception in birds. J R Soc Interface 2019, 16 (158), 20190295.
    79. Falkenberg, G.; Fleissner, G.; Schuchardt, K.; Kuehbacher, M.; Thalau, P.; Mouritsen, H.; Heyers, D.; Wellenreuther, G.; Fleissner, G., Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS One 2010, 5 (2), e9231.
    80. Beason, R. C.; Wiltschko, R.; Wiltschko, W., Pigeon Homing: Effects of Magnetic Pulses on Initial Orientation. The Auk 1997, 114 (3), 405-415.
    81. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Brasuel, M.; Philbert, M. A.; Kopelman, R., Metal-capped Brownian and magnetically modulated optical nanoprobes (MOONs): Micromechanics in chemical and biological microenvironments. J Phys Chem B 2004, 108 (29), 10408-10414.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE