| 研究生: |
劉啟人 Liu, Chi-Jen |
|---|---|
| 論文名稱: |
銅合金薄膜作為積體電路內連線系統材料之應用與分析 Characteristics of Cu alloy thin films and their applications as the interconnect materials in integrated circuits |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 銅合金薄膜 、內連接導線 |
| 外文關鍵詞: | Cu alloy film, interconnect |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討銅合金薄膜作為積體電路內連線系統材料之應用與分析。各種銅合金薄膜(銅(鈦)、銅(鉭)、銅(鋯))利用雙槍磁控濺鍍法製備,並將其沉積於二氧化矽/矽基材上。對於各種銅合金薄膜系統而言,本研究皆以兩種不同摻雜原子含量來討論。試片經500-800 oC真空退火後,吾人以歐傑能譜分析儀、拉賽福背向散射分析儀與X光光電子能譜儀分析摻雜原子與銅原子的擴散行為,並藉由θ-2θ X光繞射儀、低掠角X光繞射儀、掃瞄式電子顯微鏡與穿透式電子顯微鏡觀察薄膜的顯微結構。同時,使用四點探針量測各薄膜在室溫之片電阻值,並以該薄膜之厚度決定其電阻率。而薄膜與二氧化矽的附著性測試乃藉由Scotch tape test來評估。對於各薄膜的抗銅氧化性質而言,乃以薄膜片電阻的變化率及低掠角X光繞射儀來決定。此外,本研究亦以皮米安培計/直流電壓源來量測各不同電極MOS電容器之電流-電壓(I-V)曲線,並藉由此曲線判別各MOS電容器之漏電流大小。
實驗結果顯示,銅薄膜中之鈦、鉭、鋯等摻雜原子經退火後,會擴散至薄膜表面及薄膜與二氧化矽界面,並與氧原子反應而在表面與界面處形成一層額外氧化層。然而各摻雜原子在銅中的擴散行為並非一致,對於Cu(3.90 at.% Ti)與Cu(2.45 at.% Zr)薄膜而言,大多數的鈦、鋯等摻雜原子經700 oC退火後,會擴散至薄膜表面及薄膜與二氧化矽界面;然而Cu(2.28 at.% Ta)薄膜經700 oC退火後,大多數的鉭摻雜原子卻仍殘留在薄膜內。此外若與700 oC退火純銅薄膜相比,銅合金薄膜經700 oC退火後,銅原子擴散進入二氧化矽的程度較不嚴重,且銅合金薄膜與二氧化矽的附著性亦較佳。
電性量測結果顯示,當對MOS電容器施一外加電壓時,初鍍銅電極MOS電容器與初鍍Cu(0.03 at.% Ti)電極MOS電容器的漏電流都非常小(~10-8 A/cm2)。當各MOS電容器試片經700 oC退火後,純銅電極MOS電容器的漏電流顯著上升,然而Cu(0.03 at.% Ti)電極MOS電容器的漏電流卻仍非常小(~10-7 A/cm2)。由此漏電流之實驗結果可知,Cu(0.03 at.% Ti)電極MOS電容器的可靠度較佳。
對於試片的顯微結構而言,實驗結果顯示退火銅合金薄膜之表面型態優於純銅薄膜之表面型態。而隨著摻雜原子在銅中的含量增加,退火銅合金薄膜的孔洞成長程度與晶粒成長程度亦隨之降低。在各退火銅合金薄膜中,又以Cu(2.28 at.% Ta)薄膜表面所呈現的孔洞尺寸與晶粒尺寸為最小。然而就Cu(111)織構性質而言,卻是Cu(3.90 at.% Ti)系統與Cu(2.45 at.% Zr)系統展現較高程度的Cu(111)織構。
對於薄膜的抗銅氧化性而言,若銅合金薄膜先作700 oC的真空預熱處理,此類型試片在200 oC之大氣氣氛下展現較佳的抗銅氧化性,而其中又以預熱處理之Cu(3.90 at.% Ti)與Cu(2.45 at.% Zr)薄膜的抗銅氧化性為最佳。而對於薄膜電阻率而言,實驗結果顯示各銅合金薄膜之電阻率皆高於純銅薄膜之電阻率。若銅合金薄膜經真空退火後,其電阻率將明顯下降,然而各退火銅合金薄膜之電阻率仍較純銅薄膜之電阻率高。本研究對於薄膜電阻率之改變、摻雜原子之析出行為與薄膜表面型態等各實驗結果之關連亦有深入的探討。
In this study, the characteristics of Cu alloy thin films and their applications as the materials of interconnect in integrated circuits were explored. Thin films of pure Cu and Cu along with Ti, Ta, and Zr with two different concentrations were deposited on SiO2/Si by magnetic co-sputtering. After deposition, all films were subsequently annealed at 500-800 oC in vacuum. The dissociated behaviors of various Cu alloy films on SiO2 was explored by Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The microstructural evolution between Cu and Cu alloy films were examined by θ-2θ X-ray diffraction (XRD), glancing incident angle X-ray diffraction (GIAXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Simultaneously, the resistivity of all films, before and after annealing in vacuum, was calculated from the sheet resistance measured at room-temperature with a four-point probe and the film thickness. The adhesion between various Cu alloy films and SiO2 was determined by the scotch tape test. In addition, after the oxidation test, Cu and Cu alloy films were analyzed by the normalized sheet resistance and GIAXRD. In addition, to understand the leakage current, the current-voltage (I-V) cureves of various MOS capacitors with different metal gates were measured by using picoammeter/dc voltage.
The experimental result reveals that Ti, Ta and Zr additives in Cu would diffuse outward to the free surface and the Cu alloy/SiO2 interface, and react with O2 to form an additional oxide layer upon annealing. However, the dissociated behaviors of 700 oC annealed Cu(3.90 at.% Ti), Cu(2.28 at.% Ta) and Cu(2.45 at.% Zr) thin films are different. The Ti and Zr additives in Cu would mainly diffuse outward to the free surface and the Cu alloy/SiO2 interface. On the contrary, the majority of the Ta additives would remain within the Cu layer. In addition, compared to the annealed pure Cu films, all the Cu alloy films showed less diffusion of Cu into SiO2 when annealing at 700 oC. Furthermore, the adhesion between film and SiO2 is better in Cu alloy samples than in pure Cu ones.
The current-voltage measurement using metal-oxide-semiconductor (MOS) capacitor structure reveals low leakage current (10-8 A/cm2) for capacitors with as-deposited Cu(0.03 at.% Ti) and pure Cu metal gates. However, after annealing at 700 °C in vacuum, leakage current of MOS capacitors using pure Cu gate exhibits a dramatic increase of leakage current, while leakage current of capacitors with Cu(0.03 at.% Ti) gate remains at ~10-7 A/cm2, indicating that the Cu(0.03 at.% Ti)/SiO2 system possesses a superior reliability to the Cu/SiO2 system.
The microstructural result shows that the surface morphology of Cu alloy films is superior to pure Cu films after annealing. The extent of void and grain growth decreases as the additives increases. Among all annealed Cu alloy films, the annealed Cu(2.28 at.% Ta) film shows the lowest degree of void and grain growth, but Cu(3.90 at.% Ti) and Cu(2.45 at.% Zr) films present higher degree of Cu(111) texture.
According to the results of the oxidation test, the Cu alloy films pre-annealed at 700 °C reveal a superior oxidation resistance when annealed at 200 °C in air, especially for the pre-annelaed Cu(3.90 at.% Ti) and Cu(2.45 at.% Zr) films. In addition, the room-temperature resistivity of various Cu alloy films is higher than that of pure Cu films, but decreases as the annealing temperature increases. However, the room-temperature resistivity of all annealed Cu alloy films is still larger than that of pure Cu films with the same treatment. The relations between the resistivity variation and segregation of additives/surface morphology are also discussed.
1. The International Technology Roadmap for Semiconductor, (Semiconductor Industry Association, San Jose, 2004).
2. S. P. Murarka, Multilevel interconnections for ULSI and GSI, Mater. Sci. Eng. R 19, 87 (1997).
3. G. W. Ray, Low dielectric constant materials integration challenges, Mat. Res. Soc. Symp. Proc. 511, 199 (1998).
4. S. P. Murarka, I. V. Verner and R. J. Gutmann, Copper-Fundamental Mechanisms for Microelectronic Application, (John Willy & Son, New York, 2000).
5. J. R. Llord and J. J. Clement, Electromigration in copper conductors, Thin solid film 262, 135 (1995).
6. P. Brgesen, L. K. Lee, R. Gleixner and C.-Y. Li, Thermal-stress induced voiding in narrow, passivated Cu lines, Appl. Phys. Lett. 60, 1706 (1992).
7. N. Awaya and T. Kobayshi, Effect of Thin-Film Texture and Zirconium Difusion on Reliability against Electromigration in Chemical-Vapor-Deposited Copper Interconnects, Jpn, J. Appl. Phys. 37, 1156 (1998).
8. D. H. Kim, R. H. Wentorf and W. N. Gill, Film growth kinetics of chemically vapor deposited copper from Cu(HFA)2, J. Electrochem. Soc. 140, 3467 (1993).
9. W. H. Lee, Y. K. Ko, I, J. Byun, B. S. Seo, J. G. Lee, P. J. Reucoft, J. U. Lee, and J.Y. Lee, Chemical vapor deposition of an electroplating Cu seed layer using hexafluoroacetylacetonate Cu(1.5-dimethylcycollctadiene), J. Vac. Sci. Technol. A 19, 2974 (2001).
10. C. Ryu, A. L. S. Loke, T, Nogami and S. S. Wong, Effect of texture on the Electromigration of CVD Copper, IEEE Inter. Reliab. Phys. Symp.1-3, 201(1997).
11. E. M. El-Giar, R. A. Said, G. E. Bridges and D. J. Thomson, Localized electrochemical deposition of copper microstructures, J. Electrochem. Soc. 147, 586 (2000).
12. H. H. Hsu, K. H. Lin, S. J. Lin and J. W. Yeh, Electroless Copper Deposition for Ultralarge-Scale Integration, J. Electrochem. Soc. 148, C47 (2001).
13. T. L. Alford, J. Li, J. W. Mayer and S. Q. Wang, Copper-based metallization and interconnects for ultra-large-scale integration application, Thin Solid Films, 262, vii (1995).
14. J. Li, J. W. Mayer and E. G. Colgan, Oxidation and protection in copper and copper alloy thin films, J. Appl. Phys. 70, 2820 (1991).
15. J. Li, G. Vizkelethy, P. Revesz, J. W. Mayer and K. N. Tu, Oxidation and reduction of copper oxide thin films, J. Appl. Phys. 69, 1020 (1991).
16. H. K. Lious, J. S. Huang and K. N. Tu, Oxidation of Cu and Cu3Ge thin film, J. Appl. Phys. 77, 5443 (1995).
17. E. R. Weber, Transition Metals in Silicon, Appl. Phys. A 30, 1 (1983).
18. J. D. McBrary, R. M. Swanson and T. W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc. 133, 1242 (1986).
19. D. D. Nolte, Microscopic pointlike defect in semiconductor: Deep-level energies, Phys. Rev. B 38, 7994 (1998).
20. G. Raghavan, C. Chiang, P. B. Anders, S. M. Tzeng R. Villasol, G. Bia, M. Bohr and D. B. Fraser, Diffusion of copper through dielectric films under bias temperature stress, Thin Solid Films 262, 168 (1995).
21. C. S. Liu and L. J. Chen, Catalytic oxidation of (001)Si in the presence of Cu3Si at room temperature, J. Appl. Phys. 74, 3611 (1993).
22. I. Barin, Thermochemical data of pure substances, 3rd ed. (VCH, New York, 1995).
23. P. Borgesen, J. K. Lee, R. Gleixner and C. Y. Li, Thermal-stress-induced voiding in narrow, passivated Cu line, Appl. Phys. Lett. 60, 1706 (1992).
24. C. Steinbrüchel, Patterning of copper for multilevel metallization: reactive ion etching and chemical-mechanical polishing, Appl. Surf. Sci. 91, 139 (1995).
25. J. M. Steigerwald, R. Zirpoli, S. P. Murarka, D. Price and R. J. Gutmann, Pattern Gemoetry Effects in the Chemical-Mechanical Polishing of Inlaid Copper Structures, J. Electrochem. Soc. 141, 2842 (1994).
26. J. Hernandez, P. Wrschka and G. S. Oehrlein, Surface Chemical Studies of Copper Chemical Mechanical Planarization, J. Electrochem. Soc. 148, G389 (2001).
27. Y. E. Eli, E. Abelev, E. Rabkin and D. Starosevtsky, The Compatibility of Copper CMP Slurries with CMP Requirements, J. Electrochem. Soc. 150, G646 (2003).
28. Planarization Strategy of Cu CMP: Interaction between Plated Copper Thickness and Removal Rate, J. Electrochem. Soc. 151, G217 (2004).
29. T. Du, D. Tamboli, V. Desai and S. Seal, Mechanism of Copper Removal during CMP in Acidic H2O2 Slurry, J. Electrochem. Soc. 151, G230 (2004).
30. J. M. Steigerwald, S. P. Murarka and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, (John Willy & Son, New York, 1997).
31. T. Y. Teo, W. L. Goh, V. S. K .Lin, L. S. Leong, T. Y. Tse and L .Chan, Characterization of seratches generated by a muliplaten copper chemical-mechanical polishing process, J .Vac. Sci. Technol. B 22, 65 (2004).
32. L. Zhang, S. Raghavan and M. Weling, Minimization of chemical-mechanical planarization (CMP) defects and post-CMP cleaning, J .Vac. Sci. Technol. B 17, 2248 (1999).
33. H. Ono, T. Nakano and T. Ohta, Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W), Appl. Phys. Lett. 64, 1511 (1994).
34. T. Laurial, K. Zeng and J. K. Kivilahti, Failure mechanism of Ta diffusion barrier between Cu and Si, J. Appl. Phys. 88, 3377 (2000).
35. M. T. Wang, Y. C. Lin and M. C. Chen, Barrier Properties of Very Thin Ta and TaN Layers Again Copper Diffusion, Electrochem. Soc. 145, 2538 (1998).
36. M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang and H. T. Chiu, Comparison of the diffusion barrier properties of the chemical-vapor-deposited TaN and sputtered TaN between Cu and Si, J. Appl. Phys. 79, 6932 (1996).
37. K. H. Min, K. C. Chun and K. B. Kim, Comparative study of tantalum and tantalum nitrides (TaN and Ta2N) as a diffusion barrier for Cu metallization, J. Vac, Sci, Technol. B 14, 3263 (1996).
38. G. S. Chen and S. C. Huang, Intrinsic properties and barrier behaviors of thin films of sputter-deposited single-layered and alternately layered tantalum nitrides (Ta2N/TaN), J. Electrochem, Soc., 148, G424 (2001).
39. C. C. Chang, J. S. Chen and W. S. Hsu, Failure Mechanism of Amorphous and Crystalline Ta-N Films in the Cu/Ta-N/Ta/SiO2 structure, J. Electctrochem. Soc. 151, G746 (2004).
40. M. Y. Kwak, D. H. Shin, T. W. Kang and K. N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Films 339, 290 (1999).
41. J. S. Jeng, J. S. Chen, G. Lin and J. Su, Thermal Reactions of Cu/TiN/Ti/FSG and Cu/TiN/Ti/OSG Multilayers at Elevated Temperatures, J. Electctrochem. Soc. 149, G562 (2002).
42. J. S. Jeng and J. S. Chen, Interdiffusions and Reactions in Cu/TiN/Ti/Thermal SiO2 and Cu/TiN/Ti/Hydrogen Silsesquioxane Multilayer Structures J. Electctrochem. Soc. 149, G455 (2002).
43. J. O. Olowolafe, I. Rau, K. M. Unruh, C. P. Swann and Z. S. Jaward, Effect of composition on thermal stability and electrical resistivity of Ta-Si-N films, Thin Solid Films 365, 19 (2000).
44. L. W. Lai and J. S. Chen, Influence of Ta/Si atomic ratio on the interdiffusion between Ta-Si-N and Cu at elevated temperature, J. Appl. Phys. 94, 5396 (2003).
45. B. S. Suh, Y. J. Lee, J. S. Hwang and C. O. Park, Properties of reactively sputtered WNx as Cu diffusion barier, Thin Solid Films 348 299 (1999).
46. R. Ecke, S. E. Schulz, M. Hecker and T. Gessner, Development of PECVD WNx ultratthin films as barrier layer for copper metallization, Microelectronic Engineering 64, 261, (2002).
47. M. B. Takeyama, T. Itoi, E. Aoyagi and A. Noya, High performance of thin nano-crystalline ZrN diffusion barrier in Cu/Si contact system, Appl. Surf. Sci. 190, 450 (2002).
48. J. Y. Kwon, T. S. Yoon, K. B. Kim and S. H. Min, Comparion of the agglomeration behavior of Au and Cu film sputterdeposition on silcon dioxide, J. Appl. Phys. 93, 3270 (2003).
49. X. W. Lin and D. Pramanik, Future interconnect technologies and copper metallization, Solid State. Tech. Oct., 63 (1998).
50. W. A. Lanford, P. J. Ding, W. Wang, S. Hymes and S. P. Muraka, Low-temperature passivation of copper by doping with Al or Mg, Thin Solid Flms 262, 234 (1995).
51. D. Adams, T. L. Alford, N. D. Theodore, S. W. Russell, R. L. Spreitzer and J. W. Mayer, Passivation of Cu via refractory metal nitridation in an ammonia ambient, Thin Solid Flms 262, 199 (1995).
52. Binary Phase Diagrams, edited by T. B. Massalski, 2nd ed., (ASM International, Ohio, 1990).
53. J. Emsley, The elements, (Clarndon, Oxford, 1989)
54. J. W. Cahn, The impurity-drag effect in grain boundary motion. Acat Metall. 10, 789 (1962).
55. D. J. Srolovitz, M. P. Anderson, G. S. Grest and P. S. Sahni, Computer simulation of grain growth- III. Infrence of a particle dispersion. Acat Metall. 32, 1429 (1984).
56. C. Y. Yang, J. S. Jeng and J. S. Chen. Grain growth, agglomeration and interfacial reaction of copper interconnects, Thin Solid Films 398 420 (2002).
57. C. Y. Yang and J. S. Chen. Investigation of Cu Agglomeration at Elevated Temperatures, Thin Solid Films, 398 420 (2002). J. Electctrochem. Soc. 150, G826 (2003).
58. E. Nes, N. Ryum and O. Hunderi, On the Zener drag, Acat Metall. 33, 11 (1985).
59. J. M. E. Harper, E. G. Colgan, C-K. H, J. P. Hummel, L. P. Buchwalter and C. E. Uzoh, Materials Issues in Copper Interconnections, MRS Bulletin AUG, 23 (1994).
60. K. Schröder, Handbook of Electrical Resistivities of Binary Metallic Alloys, (CRC, Ohio, 1983).
61. J. A. Cunningham, Improving Copper Interconnects: A Search for Useful Dopants, Semiconductor International, April, 95 (2000).
62. K. Barmak, A. Gungor, C. Cabral, Jr., and J. M. E. Harper, Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity, J. Appl. Phys. 94, 1605 (2003).
63. W. Wang, W. A. Lanford and S. P. Murarka, Completely passivated high conductivity copper films made by annealing Cu/Al bilayers, Appl. Phys. Lett. 68, 1622 (1996).
64. H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro and H. Okano, Self-aligned passivation on copper interconnection durability against oxidizing ambient annealing, Appl. Phys. Lett. 63, 934 (1993).
65. P. J. Ding, W. Wang, W. A. Lanford, S. Hymes and S. P. Murarka, Thermal annealing of buried Al barrier layers to passivate the surface of copper films, Appl. Phys. Lett. 65, 1778 (1994).
66. S. W. Russell, S. A. Rafalski, R. L. Spreitzer, J. Li, M. Moinpour, F. Moghadam and T. L. Alford, Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions, Thin Solid Films 262 154 (1995).
67. D. Adams, T. L. Alford, N. D. Theodore, S. W. Russell, R. L. Spreitzer and J. W. Mayer, Passivation of Cu via refractory metal nitridation in an ammonia ambient, Thin Solid Films 262, 199 (1995).
68. J. P. Chu, C. H. Chung, P. Y. Lee, J. M. Rigsbee and J. Y. Wang, Microstructure and properties of Cu-C Pseudoalloy Films Preoared by Sputter Deposition, Metall. Meter.Trans. A 29, 647 (1998).
69. J. P. Chu and T. N. Lin, Deposition, microstructure and properties of sputteries and properties of sputtered copper films containing insoluble molybdenum, J. Appl. Phys. 85, 6462 (1999).
70. J. P. Chu, C. J. Liu, C. H. Lin, T. N. Lin and S. F. Wang, Characterizations of super hard Cu films containing insoluble W prepared by sputter deposition, Mater. Chem. Phys. 72, 286 (2001).
71. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin and S. F. Wang, Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study, J. Electron. Mater. 32, 1235 (2003).
72. C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin and S. F. Wang, Thermal stability of sputtered copper films containing dilute insoluble tungsten: Thermal annealing study, J. Mater. Res. 18, 1429 (2003).
73. K. Barmak, G. A. Lucadamo, C. Cabral, Jr., C. Lavoie and J. M. E. Harper, Dissociation of dilute immiscible copper alloy thin films, J. Appl. Phys. 87, 2204 (2000).
74. C. L. Liu, Screening beneficial dopants to Cu interconnects by modeling, Appl. Phys. Lett. 80, 763 (2002).
75. C. L. Liu, Modeling and Simulation design of advancd Cu alloy interconnects, J. Appl. Phys. 80, 763 (2002).
76. F. W. Young, J. V. Cathcart and A. T. Gwathmey, The rate of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light. Acta Metal. 4, 145 (1956).
77. C. A. Chang, Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures. J. Appl., Phys. 67, 566 (199).
78. M. McLean and B. Gale, Surface energy anisotropy by an improved thermal grooving technique. Philos. Mag. 20, 1033 (1969).
79. S. S. Wong, C. Ryu, H. Lee, A. L. S. Loke, K. W. Kwon, S. Bhattacharya, R. Eaton, R. Faust, B. Mikkola, J. Mucha and J. Ormando, Barrier/Seed layer requirements for copper interconnects, IEEE Inter. Interconnect Tech. Conference 8-10, 107 (1997).
80. T. Hara, K. Sakata and Y. Yoshida, Control of the Cu(111) orientation in Copper Interconnection Layer, Electrochemical and Solid-state Letters 5, C41 (2002).
81. W. H. Lee, Y. K. Ko, J. H. Jang, C. S. Kim, P. J. Reucroft and J. G. Lee, Microstructure Control of Copper Films by the Additon of Molybdenum in an Advanced Metallization Process, J. Electron. Mater. 30, 1042 (2001).
82. A. Gungor, K. Barmak, A. D. Rollett, C. Cabral, Jr. and J. M. E. Harper, Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Cr) and Cu(W) alloy thin films, J. Vac. Sci. Thchnol. B 20, 2314 (2002).
83. K. Sasaki, H. Miyake, S. Shinkai, Y. Abe and H. Yanagisawa, Realization of Cu(111) Signal-Oriented State on SiO2 by Annealing Cu-Zr Film and the Thermal Stability of Cu-Zr/ZrN/Zr/Si Contact System, Jpn. J. Appl. Phys. 40, 4661 (2001).
84. Y. Igarashi and T. Ito, Electromigration properties of copper-zirconium alloy interconnects, J. Vac. Sci. Technol. B 16, 2745 (1998).
85. K. Hoshion, H. Yagi and H. Tsuchikawa, Effect of titanium addition to copper interconnect on electromigration open circuit failure, 7th-Intern.VLSI Multilevel Interconnection Conference 12-13, 357 (1990).
86. K. L. Lee, C. K. Hu and K. U. Tu, In Suit scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnect, J. Appl Phys. 78, 4428 (1995).
87. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., (John Wiley & Sons, Arizona, 1998).
88. R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis, (P T R Prentice-Hall, New Jersey, (1993).
89. W. K. Chu, J. W. Mayer and M. A. Nicolet, Backscattering Spectrometry, (Academic, New York, 1978).
90. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester, 1990).
91. A. J. Kinloch, Adhesion and adhesives, (Chapman and Hall, New York, 1987).
92. B. N. Chapman, Thin-film adhesion, J. Vac. Sci. Technol. 11, 106 (1974).
93. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., (Addison-Wesley, Boston, 1978).
94. P. N. Gibson, Surface and Thin Film Analysis, edited by H. Bubert and H. Jenett, (Wiley-VCH, Germany, 2002).
95. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, (Plenum, New York, 1996).
96. 1984 Annual Book of ASTM Standards, Sec. 3, Vol. 03.03, ASTM Standard Designation: E-112-82, (ASTM, Philadelphia, 1984), P.126.
97. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, edited by J. Chastain and R. C. King, Jr. (Inc., Minnesota, 1995).
98. E. Atanassova and D. Spassove, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si. Appl. Surf. Sci. 135, 71 (1998).
99. S. Lecuyer, A. Quemerais and G.. Jezequel, Composition of Natural Oxide Film on Polycrystallin Tantalun using XPS Electron Take-off Angle Experiments, Surf. Interface Anal. 18, 257 (1992).
100. D. Majumdar and D. Chatterjee, X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia. J. Appl. Phys. 70, 988 (1991).
101. J. P. Chu and T. N. Lin, Deposition, microstructure and properties of sputtered copper films containing insoluble molybdenum. J. Appl. Phys. 85, 6462 (1999).
102. J. J. Toomey, S. Hymes and S. P. Murarka, Stress effects in thermal cycling of copper (magneisum) thin films, Appl. Phys. Letts. 66, 2074 (1995).
103. S. Y. Lee, R. E. Hummel and R. T. DeHoff, On the role of indium underlays in the prevention of thermal grooving in thin gold films, Thin Solid Films 149, 29 (1987).
104. K. T. Miller, F. F. Lange and D. B. Marshell, The instability of polycrystalline thin films: Experiment and theory. J. Mater. Res. 5, 151 (1990).
105. J. J. Rha and J. K. Park, Stability of the grain configurations of thin films-A model for agglomeration, J. Appl. Phys. 82, 1608 (1997).
106. J. J. Rha and J. K. Park, Agglomeration of TiSi2 thin film on (100) Si substrate, J. Appl. Phys. 82, 2933 (1997).
107. D. Weiss, O. Kraft and E. Arzt, Grain-boundary voiding in self-passivated Cu–1 at.% Al alloy films on Si substrates. J. Mater. Res. 17, 1363 (2002).
108. P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Oxidation resistant high conductivity copper films, Appl. Phys. Lett. 64, 2897 (1994).
109. CRC Handbool of Chemistry and Physics, edited by D. R. Lide, 85th ed., (CRC, Boca Raton, 2004).
110. J. A. Cunningham, Using electrochemistry to improve copper interconnects, Semiconductor international May, 97 (2000).
111. P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Effects of the addition of small amounts of Al to copper,: Corrosion, resistivity, adhesion, morphology, and diffusion, J. Appl. Phys. 75, 3627 (1994).
112. S. Hymes, K. S. Kumar, S. P. Murarka, W. Wang and W. A. Lanford, Oxidation resistant dilute copper (boron) alloy films prepared by dc-magnetron cosputtering. Mater. Res. Spc. Symp. Proc. 429, 193 (1996).
113. C. Cabral, Jr., J. M. E. Harper, K. Holloway, D. A. Smith and R. G. Schad, Preparation of low Cu-1at.% Cr thin films by magnetron sputtering, J. Vac. Sci. Technol. A 10, 1706 (1992).
114. W. Lee, H. Cho, B. Cho, J. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. Lee, P. J. Reucroft, C. Lee and J. Lee, Factors Affecting Passivation of Cu(Mg) Alloy Films, J. Electrochem. Soc. 147, 3066 (2000).