簡易檢索 / 詳目顯示

研究生: 蔡宗杰
Tsai, Zong-Jie
論文名稱: 具有陽極氧化鋁式奈米孔洞圖案結構之氮化鎵發光二極體之研製
Fabrication of GaN-Based Light-Emitting Diodes with Anodized Aluminum Oxide-Nanoporous Pattern Structures
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 氮化鎵陽極氧化鋁圖形化基板線差排非輻射複合
外文關鍵詞: gallium nitride, anodized aluminum oxide, patterned sapphire substrate, threading dislocations, non-radiative recombination
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,為了改善氮化鎵(GaN)系發光二極體(LEDs)的磊晶品質,我們提出利用陽極氧化鋁(anodized aluminum oxide,AAO)薄膜來圖形化藍寶石基板,並應用此奈米級圖形化基板來有效地提升氮化鎵系發光二極體的磊晶品質;首先,我們提出在藍寶石基板上製備陽極氧化鋁薄膜,藉由調變氧化時的參數來改善多孔性陽極氧化鋁薄膜的孔徑大小和排列規則度;接著應用此多孔性陽極氧化鋁薄膜來製備陽極氧化鋁奈米孔洞圖形化基板(anodized aluminum oxide-nanoporous patterned sapphire substrate,AAO-NPSS),並以此基板磊晶成長氮化鎵系發光二極體,並做一系列材料分析與元件光電性量測,深入且詳細地探討磊晶品質與光電特性改善之結果。
    於陽極氧化鋁薄膜的研究中,我們成功地於藍寶石基板上成長出具有規則性的多孔性陽極氧化鋁薄膜。首先我們在藍寶石基板上熱蒸鍍上一層鋁薄膜,並使用草酸當作電解液,接著於鋁薄膜上外加偏壓進行陽極氧化,製作出具有多孔性的陽極氧化鋁薄膜,並利用陽極氧化參數調變來改善陽極氧化鋁薄膜之品質。於本研究中吾人利用調變擴孔時間改善陽極氧化鋁薄膜孔徑過小的問題;並利用二次陽極氧化來改善孔洞之間排列的規則度;此外,為了加快製備速度與方便性,我們利用氫氧化鈉與氧化鋁反應快速的特性,選其作為陽極氧化鋁孔洞移除之溶液,以有效地降低規則性陽極氧化鋁薄膜之製備時間。
    此外,由於氮化鎵與藍寶石基板間晶格不匹配導致大量線差排(threading dislocation)產生,在陽極氧化鋁奈米孔洞圖形化基板應用於氮化鎵發光二極體的研究當中,我們利用了乾蝕刻的方式成功地將多孔性陽極氧化鋁薄膜上的高規則性奈米孔洞圖形轉移至藍寶石基板上,製作出了奈米級的圖形化基板(patterned sapphire substrate),此奈米級圖形化基板可有效地降低氮化鎵磊晶層中的線差排密度,大幅提升磊晶品質,減少非輻射復合(non-radiative recombination)的熱消耗,進而改善發光二極體的發光效率。在材料分析當中,我們從穿透式電子顯微鏡(TEM)剖面圖中驗證出使用陽極氧化鋁奈米孔洞圖形化基板所成長出的氮化鎵磊晶層可有效降低線差排的產生;我們亦從掃描式電子顯微鏡(SEM)中觀察到在氮化鎵磊晶層和奈米級圖形化基板之間有微小的空氣孔洞(air voids)的產生,此空氣孔洞可反射向基板發散之出光,有效地增加光萃取率(light extraction efficiency);於拉曼(Raman)頻譜分析中亦可發現使用陽極氧化鋁奈米孔洞圖形化基板所成長出的氮化鎵磊晶層波數(wavenumber)有明顯的藍移現象,此乃因為磊晶層間晶格不匹配所引發的應力受到釋放;另外在X光繞射分析(XRD)中發現使用陽極氧化鋁奈米孔洞圖形化基板所成長出的氮化鎵磊晶層於(0002)面有較小的半高寬(FWHM),此結果亦再次證實磊晶品質的改善。在電性與光性的分析中,我們發現應用陽極氧化鋁奈米孔洞圖形化基板所成長之發光二極體於光性特性與外部量子效率皆有明顯地提升且順向導通電壓亦可有效地改善。最後於可靠度分析中,經過1000小時的測試,使用陽極氧化鋁奈米孔洞圖形化基板的發光二極體元件於可靠度部分亦獲得改善。

    In this thesis, in order to enhance the crystalline quality of gallium nitride (GaN)-based light-emitting diodes (LEDs), a nanoporous anodized aluminum oxide (AAO) thin film was used to pattern sapphire substrate, which can effectively improve crystalline quality of GaN epitaxial layer. First, we introduce an AAO thin film grown on a sapphire substrate with a highly-ordered pores arrangement by modulating conditions of anodization. After that, the AAO nanoporous pattern was transferred on a sapphire substrate by inductively coupled plasma (ICP) etching process. And we used this anodized aluminum oxide-nanoporous patterned sapphire substrate (AAO-NPSS) to enhance the crystalline quality of GaN-based LEDs. The material analyses as well as optical and electrical characteristics were also studied and discussed.
    In the study of nanoporous AAO thin film, the regular AAO thin film is successfully grown on a sapphire substrate. Firstly, a thin aluminum layer was evaporated on a sapphire substrate by a thermal evaporator. Oxalic acid was chosen as the electrolyte. Then, the thin aluminum layer was anodized by applying bias voltage. Finally, parameters of anodization were modulated to improve the quality of AAO thin film. In this study, pore widening time was increased to figure out the problem that pore diameters of AAO were too small. In addition, a two-step anodization approach was applied to improve the regularity of pores arrangement. Lastly, in order to shorten the fabrication time and increase convenience of anodization of the highly-ordered AAO thin film, sodium hydroxide (NaOH) solution was utilized as the removing solution.
    Because of lattice mismatch and remarkable difference in thermal expansion coefficient between sapphire substrate and GaN, highly compressive stress, which is induced with the decrement of growth temperature, leads to many threading dislocations (TDs) on GaN epitaxial layers. These TDs seriously deteriorate device performance and reliability. Hence, in order to alleviate this problem, the employment of AAO-NPSS is used to reduce strain and dislocation density as well as significantly improve the light extraction efficiency (LEE). In the material analyses, from the comparison of transmission electron microscopy (TEM) images, TDs could be reduced by using an AAO-NPSS. In addition, air voids were also formed between GaN layers and the AAO-NPSS. The formation of air voids could reflect photons emitted from MQW upward to top direction rather than be absorbed by bottom package metal. Photons could experience more opportunities to be extracted outside. Moreover, the blueshift phenomenon could also be observed in Raman spectra analyses which could be attribute to the strain relaxation. Most importantly, the studied device exhibits smaller full width half maximum in X-ray diffraction (XRD) spectrum. This result has once again confirmed that crystalline quality of GaN epitaxial layers could be improved by using an AAO-NPSS. As compared with a conventional LED, at 20 mA, the studied device exhibits 52.8% and 43.3% enhancements of light output power (LOP) and external quantum efficiency (EQE), respectively. Substantially, the reduced leakage current and decreased turn-on voltage are also achieved. Reliability of the studied device could also be improved. Therefore, the studied AAO-NPSS shows the promise to fabricate high-performance GaN-based LEDs.

    Table of Contents Abstract I Table Captions XV Figure Captions XVI Chapter 1. Introduction 1 1-1.History and Development of Anodic Aluminum Oxide 1 1-2.History and Development of Light-Emitting Diodes 2 1-3.The Problems of GaN-Based Light-Emitting Diodes 4 1-4.Organization of This Thesis 5 Chapter 2. Anodized Aluminum Oxide Thin Film 6 2-1.Introduction 6 2-1-1.Introduction of anodized aluminum oxide 6 2-1-2.Theory of anodized aluminum oxide 6 2-2.Experimental Processes 9 2-2-1.AAO fabrication processes 9 2-3.Experimental Results and Disscussion 10 2-3-1.Experimental analysis of pore widening time modulation 10 2-3-2.Experimental analysis of two-step anodization 11 2-3-3.Experimental analysis of multi-step anodization 12 2-4.Summary 13 Chapter 3. GaN-Based LEDs with an AAO-NPSS 32 3-1.Introduction 32 3-1-1.Introduction 32 3-1-2.The problems between sapphire and GaN epitaxial layers 34 3-2.Fabrication Processes of LED Devices 36 3-2-1.AAO-NPSS and epitaxial structure 36 3-2-2.LED wafer cleaning processes 37 3-2-3.Device structure and fabrication 37 3-3.Experimental Results and Discussion 38 3-3-1.Material analyses of GaN-based LEDs with AAO-NPSS 38 3-3-2.Electrical and optical characterizations 42 3-4.Summary 47 Chapter 4. Conclusion and Prospect 74 4-1.Conclusions 74 4-2.Prospects 75 References 81

    References
    1.Bengough. G. D. and Stuart. J. M. Brit. Patent 223,994, 1923.
    2.H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina,”Science, New Series, vol. 268, pp. 1466-1468, 1995.
    3.J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem Rev., vol. 69, pp.365-405, 1969.
    4.G. E. Thompson and G. C. Wood, “Anodic films on aluminium,” Aqueous Process and Passive Films, vol. 23, Ch. 5, pp. 205-329, 1983.
    5.S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of aluminum,” The Surface Treatment Finishing of Aluminium and Its Alloys, vol. 1, Ch. 6, pp. 289, 1987.
    6.Osaka, “Report of the research group for functionalizing of aluminum and its surface films,”Light Metal Educ. Found., 1988.
    7.A. Despic and V. P. Parkhutik, “Electrochemistry of aluminum in aqueous solution and physics of its anodic oxide,” Morden Aspects of Electrochemistry, vol. 23, Ch. 6, pp. 401, 1989.
    8.C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater., vol. 8, pp. 1739-1746, 1996.
    9.M. M. Lohrengel, “Thin anodic oxide layers on aluminum and other valve metals: high-field regime,” Mater. Sci. Eng., vol. R11, pp. 243-294, 1993.
    10.D. AlMawlawi, N. Coombs, and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size,” J. Appl. Phys., vol. 70, pp. 4421-4425, 1991.
    11.N. Tsuya, T. Tokushima, Y. Wakui, Y. Saito, H. Nakamura, S. Hayano, A. Furugori, and M. Tanaka, “Alumite disc using anodic oxidation,” IEEE Trans. Magn,. vol. 22, pp. 1140-1145, 1986.
    12.N. Tsuya, T. Tokushima, M. Shiraki, Y. Umehara, Y. Saito, H. Nakahara, and Y. Harada, “Perpendicular magnetic flexible disc by anodic oxidation,” IEEE Trans. Magn,. vol. 24, pp. 1790-1792, 1988.
    13.G. W. D. Spratt, P. R. Bissell, R. W. Chantrell, and E. P. J. Wohlfarth, “Static and dynamic experimental studies of particulate recording media,” vol. 75, pp. 309-318, 1988.
    14.A. Lyberators, R. W. Chantrell, E. R. Sterringa, and J. C. Lodder, “Magnetic viscosity in perpendicular media,” J. Appl. Phys.. vol. 70, pp. 4431-4438, 1991.
    15.E. O. Samwel, P. R. Bissell, and J. C. Lodder, “Remanent magnetic measurements on perpendicular recording materials with compensation for demagnetizing fields,” J. Appl. Phys.. vol. 73, pp. 1353-1359, 1993.
    16.F. Li , X. Bao ,R. M. Metzger, and M. Carbucicchio, “Lanthanide and boron oxide‐coated α‐Fe particles,” J. Appl. Phys.. vol. 79, pp. 4869-4872, 1996.
    17.F. Li and R. M. Metzger, “Activation volume of α-Fe particles in alumite films” J. Appl. Phys.. vol. 81, pp.3806-3808, 1997.
    18.F. Li, R. M. Metzger, and W. D. Doyle, “Influence of particle size on the magnetic viscosity and activation volume of α-Fe nanowires in alumite films,” IEEE Trans. Magn., vol. 33, pp. 3715-3717, 1997.
    19.L. Zhang, H. S. Cho, F. Li, R. M. Metzger, W. D. Doyle, “Cellular growth of highly ordered porous anodic films on aluminum.,” J. Mater. Sci. Lett., vol. 17, pp. 291-294, 1998.
    20.H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. Appl. Phys., vol. 35, pp. L126-L129, 1996.
    21. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, pp. 1466-1468, 1995.
    22. Y. Lei and K. S. Yeong, “Large-scale ordered carbon nanotube arrays initiated from highly ordered catalyst arrays on silicon substrate,” Chem. Mater., vol. 16, pp. 2757-2761, 2004.
    23. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 321-332, March/April, 2002.
    24. D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Proc., vol. 85, pp. 1752-1764, 1997.
    25. T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Technol. Lett., vol. 18, pp. 1876–1878, Sep. 2006.
    26. X. Y. Sun, R. Bommerna, D. Burckel, A. Frauenglass, N. Fairchild, S. R. J. Bryeck, G. A. Garrett, M. Wraback, and S. D. Hersee, “Defect reduction mechanisms in the nanoheteroexpitaxy of GaN on SiC,” J. Appl. Phys., vol. 95, pp. 1450-1454, 2004.
    27. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal lighting emitting diode,” Appl. Phys. Lett., vol. 84, pp. 466-468, 2004.
    28. C. Y. Lee, M. C. Wu, Y. D. Tian, W. H. Wang, W. J. Ho, and T. T. Shi, “Effects of rapid thermal annealing on InAsP/InP strained multiquantum well laser diodes grown by metal organic chemical vapor deposition,” Electron. Lett., vol. 36, pp.1026 -1028, 2000.
    29. C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
    30. J. I. Chyi, “MBE growth and characterization of InGaAs quantum dot lasers,” Mater. Sci. Technol B, vol. 75, pp. 121-125, 2000.
    31. P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
    32. P. W. Liu, G. H. Liao, and H. H Lin, “1.3 μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 40, pp. 177 -179, 2004.
    33. W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
    34. K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, pp. 294-296, 1998.
    35. D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron, vol. 40, pp. 413- 419, 2004.
    36. H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
    37. W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
    38. W. C. Liu, L. W. Laih, C. Z. Wu, S. Y. Cheng, and J. H. Tsai, “Observation of the multiple negative-differential-resistance of metal-insulator-semiconductor-like structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Electron Device Lett., vol. 18, pp. 129-131, 1997.
    39. W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
    40. J. H. Tsai, “Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 1668–1670, 1999.
    41. W. C. Liu, L. W. Laih, S. Y. Cheng, W. L. Chang, W. C. Wang, J. Y. Chen, and P. H. Lin, “Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal-like (MISIM) structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Trans. Electron Devices, vol. 45, pp. 373-379, 1998.
    42. W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
    43. W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, pp. 1630-1635, 1993.
    44. W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
    45. W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
    46. C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP/InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
    47. W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
    48. K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
    49. W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, pp. 548-550, 1999.
    50. W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    51. H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device, vol. 50, pp. 1717-1723, 2003.
    52. J. W. Allen, M. E. Moncaster and J. Starkiewicz, “Electroluminescent devices using carrier injection in gallium phosphide,” Solid-State Electron., vol. 6, pp. 95-96, 1964.
    53. N. Holonyak and Bevacqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82-84, 1962.
    54. R. A. Logan and F. K. Reinhart, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 44, pp. 4172-4174, 1973.
    55. W. B. Chen, Y. K. Su, C. L. Lin, H. C. Wang, J. Y. Su, M. C. Wu, S. M. Chen, and H. R. Chen, “Oxide Confinned Collector-Up Heterojunction Bipolar Transistors,” Jpn. J. Appl. Phys., Part 1, vol. 42, pp. 2612–2614, 2003.
    56. Y. K. Su, W. B. Chen, C. L. Lin, H. C. Wang, S. M. Chen, and K. M. Liang, “Elimination of burn-in effect in carbon-doped InGaP/GaAs HBTs by hydrogen lateral diffusion,” Solid State Electron, vol. 47, pp. 2011-2014, 2003.
    57. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
    58. H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
    59. F. A. Kish, F. M. Steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
    60. H. P. Maruska and J. J. Tietjen, “The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, pp. 367-369, 1969.
    61. J. I. Pankov, E.A. Miller, D. Richman, and J.E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, vol. 4, pp. 63-66, 1971.
    62. H. P. Maruska, D.A. Stevenson, and J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp.1003-1006, 1973.
    63. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    64. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    65. S. Nakamura, M. Kito, K. Hiramatsu, and I.Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jan. J. Appl. Phys., vol. 34, pp. L796-L797, 1995.
    66. H. P. Maruska, Orlando, Florida [Online]. ”A brief history of GaN blue light-emitting diodes,” http://www.sslighting.net/lightimes/features/maruska_blue_led_history.pdf
    67. M. S. Shur, “GaN-based devices,” IEEE Electron. Device Lett., vol. 63, pp. 15–18, 2005.
    68. M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zang, M. J. Kappers, and C. J. Humphreys, “On the origin of threading dislocations in GaN films,” J. Appl. Phys., vol. 106, pp. 073513-073522, 2009.
    69. S. Wernick, R. Pinner, and P. G. Sheasby, “The surface treatment and finishing of aluminum and its alloys,” Finishing Association, Teddington, 1987.
    70. T. Dai, B. Zhang, X. N. Kang, K. Bao, W. Z. Zhao, D. S. Xu, G. Y. Zhang, and Z. Z. Gan, “Light Extraction Improvement From GaN-Based Light-Emitting Diodes With Nano-Patterned Surface Using Anodic Aluminum Oxide Template,” IEEE Photonics Technol. Lett., vol. 20, no. 23, pp. 1974-1976, 2008.
    71. K. Kim, J. Choi, T. S. Bae, M. Jung, and D. H. Woo, “Enhanced Light Extraction from Nanoporous Surfaces of InGaN/GaN-Based Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 46, pp. 6682-6684, 2007.
    72. C. C. Wang, H.C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved Extraction Efficiency of Light-Emitting Diodes by Modifying Surface Roughness With Anodic Aluminum Oxide Film,” IEEE Photonics Technol. Lett., vol.20, pp. 428-430, 2008.
    73. M. H. Doan, H. Lim, and J. J. Lee, “Enhanced Cathodoluminescence from InGaN/GaN Light-emitting Diodes with Nanohole Arrays Fabricated Using Anodic Aluminum-oxide Masks,” Journal of the Korean Physical Society, vol.57, pp. 1295-1298, 2010.
    74. C. S. Li, S. H. Su, H. Y. Chi, and M. Yokoyama, “Application of highly ordered carbon nanotubes templates to field-emission organic light-emitting diodes,” Journal of Crystal Growth, vol.311, pp. 615-618, 2009.
    75. J. M. Park, J. K. Oh, K. W. Kwon, Y. H. Kim, S. S. Jo, J. K. Lee, and S. W. Ryu, “Improved Light Output of Photonic Crystal Light-Emitting Diode Fabricated by Anodized Aluminum Oxide Nano-Patterns,” IEEE Photonics Technol. Lett., vol. 20, pp. 321-323, 2008.
    76. X. X. Fu, B. Zhang, X. N. Kang, J. J. Deng, C. Xiong, T. Dai, X. Z. Jiang, T. J. Yu, Z. Z. Chen, and G. Y. Zhang, “GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template,” Opt. Express, vol. 19, pp. A1104-A1108, 2011.
    77. K. Kim, J. Choi, M. Jung, and D. H. Woo, “Enhanced Fabry–Perot Interferences from Nanoporous Surfaces of GaN Thin Films Patterned by Anodic Alumina Templates,” Jpn. J. Appl. Phys., vol. 47, pp. 6354-6356, 2008.
    78. Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys., vol.100, pp.054306-054310, 2006.
    79. Y. H. Pai, C. W. Tseng, and G. R. Linb, “Size-Dependent Surface Properties of Low-Reflectivity Nanoporous Alumina Thin-Film on Glass Substrate,” Journal of The Electrochemical Society, vol. 159, pp. E99-E102, 2012.
    80. L. C. Chen and B. H. Liu, “Porous Silicon Layer Patterned from Anodic Aluminum Oxide and Application in ZnPc Hybrid Solar Cell,” Electrochemical and Solid-State Letters, vol. 13, pp. H108-H111, 2010.
    81. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, pp. 6023-6026, 1998.
    82. O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., vol. 72, pp. 1173-1175, 1998.
    83. G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films, vol. 297, pp. 192-201, 1997.
    84. F. Li, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., vol. 10, pp. 2470-2480, 1998.
    85. J. Martin, C.V. Manzano, and M.M. Gonzalez, “In depth study of self-ordered porous alumina in the 140-400 nm pore diameter range,” Microporous Mesoporous Mat., vol. 151, pp. 311-316, 2012.
    86. H. Morkoc and N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting-diodes,” Science, vol. 267, pp. 51-55, 1995.
    87. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling current in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett., vol. 23, pp. 535-537, 2002.
    88. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett., vol. 79, pp. 711-712, 2001.
    89. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993.
    90. T. Kozawa, T. Kachi, Hano, H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” J. Appl. Phys., vol. 77, pp. 4389-4392, 1995.
    91. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabrication in pattern substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-L585, 2001.
    92. Y. Kato, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 144, pp. 133-140, 1994.
    93. C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstoedt, G. M. Peake, and L. Griego, “Low-dislocation-density GaN from a single growth on a textured substrate,” Appl. Phys. Lett., vol. 77, pp. 3233-3235, 2000.
    94. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., vol. 89, pp. 161105-161108, 2006.
    95. C.H. Chiu, L. H. Hsu, C. Y. Lee, C. C. Lin, B. W. Lin, S. J. Tu, Y. H. Chen, C. Y. Liu, W. C. Hsu, Y. P. Lan, J. K. Sheu, T. C. Lu, G. C. Chi, H. C. Kuo, S. C. Wang, and C. Y. Chang, “Light extraction enhancement of GaN-based light-emitting diodes using crown-shaped patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 24, pp. 1212-1214, 2012.
    96. Y.K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrate,” J. Cryst. Growth, vol. 311, pp. 2973-2976, 2009.
    97. J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, “Enhancement of optical transmission with random nanohole structures,” Opt. Express, vol. 19, pp. A35-A40, 2011.
    98. X. Y. Han and W. Z. Shen, “Improved two-step anodization technique for ordered porous anodic aluminum membranes,” J. Electroanal. Chem., vol. 655, pp. 56-64, 2011.
    99. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1690, 1994.
    100. A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, pp. 2259-2261, 1997.
    101. P. Bhattacharya, “Semiconductor Optoelectric Devices,” Prentice Hall, 1994.
    102. S. M. Sze, “Physics of Semiconductor Devices, 2nd Ed.”, Wiley, New York, 1981.
    103. D. Hull, “Introduction to Dislocations, 2nd Ed.”, Pergamon Press, Oxford, 1975.
    104. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects, and correlation with localized excitonic centers in InGaN/ GaN multiple quantum wells,” Appl. Phys. Lett., vol. 72, pp. 692-694, 1998.
    105. J. W. Matthews, “Epitaxial Growth, Academic”, New York, 1975.
    106. M. Kneissl, T. L. Paoli, P. Kiesel, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator,” Appl. Phys. Lett., vol. 80, pp. 3283-3285, 2002.
    107. S. F. Yu, S. P. Chang, S. J. Chang, R. M. Lin, H. H. Wu, and W. C. Hsu, “Characteristics of InGaN-based light-emitting diodes on patterned sapphire substrates with various pattern heights,” J. Nanomater., vol. 2012, pp. 346915-346920, 2012.
    108. C. Y. Hsieh, B. W. Lin, H. J. Cho, B. M. Wang, N. Chang, and Y. C. S. Wu, “Improvement of epitaxy GaN quality using liquid-phase deposited nano-patterned sapphire substrates,” IEEE photonics Technol. Lett., vol. 24, pp. 2232-2234, 2012.
    109. T. Kozawa, T. Kachi, H. Kano, and H. Nagase, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” J. Appl. Phys., vol. 77, pp. 4389-4393, 1995.
    110. G. H. Olsen and M. Ettenberg, “Calculated stresses in multilayered heteroepitaxial structures,” J. Appl. Phys., vol. 48, pp. 2543-2548, 1977.
    111. Y. K. Su, C. C. Kao, C. L. Lin, and J. J. Chen, “The study of stress effects in GaN epilayers on very thin sapphire substrates using chemical mechanical polishing technique,” Jpn. J. Appl. Phys., vol. 49, pp. 04DF15-04DF15-3, 2010.
    112. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, 1996.
    113. J. Bai, T. Wang, H. D. Li, N. Jiang, and S. Sakai, “(0001) oriented GaN epilayer grown on (11-20) sapphire by MOCVD,” J. Cryst. Growth, vol. 231, pp. 41-47, 2001.
    114. J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., vol. 81, pp. 79-82, 2002.
    115. X. H. Huang, J. P. Liu, Y. M. Fan, J. J. Kong, H. Yang, and H. B. Wang, “Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape,” Chin. Phys. B, vol. 21, pp. 037105-1-037105-6, 2012.
    116. S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “Correlation of cathodoluminescence in homogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition,” Appl. Phys. Lett., vol. 70, pp. 420-422, 1997.
    117. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of non-radiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency,” Phys. Rev. Lett., vol. 95, pp. 127402-127405, 2005.
    118. K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R. F. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, “The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization,” MRS Internet J. Nitride Semicond. Res., vol. 2, pp. 6-16, 1997.
    119. F. Hitzel, G. Klewer, S. Lahmann, U. Rossow, and A. Hangleiter, “Narrow high-energy emission lines in high-resolution near-field spectroscopy on GaInN/GaN quantum wells,” Phys. Status Solidi C, vol. 1, pp.2520-2523, 2004.
    120. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Performance investigation of GaN-based light-emitting diodes with tiny misorientation of sapphire substrates,” Opt. Express, vol. 18, pp. 2729-2742, 2010.
    121. Y. J. Liu, T. Y. Tsai, C. H. Ten, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure,” IEEE J. Quantum Electron, vol. 46, pp. 492-498, 2010.
    122. Y. S. Lin and J. A. Yeh, “GaN-based light-emitting diodes grown on nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures,” Appl. Phys. Express, vol. 4, pp.092103-092103-3, 2011.
    123. A. Chakraborty, S. Keller, C. Meier, B. A. Haskell, S. Keller, P. Waltereit, S. P. DenBaars, S. Nakamura, J. S. Speck, and U. K. Mishra, “Properties of nonpolar a-plane InGaN/GaN multiple quantum wells grown on lateral epitaxially overgrown a-plane GaN,” Appl. Phys. Lett., vol. 86, pp. 031901-031903, 2005.
    124. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” J. Phys. D-Appl. Phys., vol. 44, pp. 395102-1-395102-6, 2011.
    125. L. Huang, T. Yu, Z. Chen, Z. Qin, Z. Yang, and G. Zhang, “Different degradation behaviors of InGaN/GaN MQWs blue and violet LEDs,” J. Lumines., vol. 129, pp. 1981-1984, 2009.
    126. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Krecthmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron. Device Lett., vol. 23, pp. 535-537, 2002.
    127. I. Martil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III-V nitrides,” J. Appl. Phys., vol. 81, pp. 2442-2445, 1997.
    128. M. F. Schubert, S. Chhajed, J. K. Kim, and E. F. Schubert, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 231114-231117, 2007.
    129. Z. J. Tsai, J. K. Liou, and W. C. Liu, “Enhanced performance of a GaN-based LED prepared by an anodized aluminum oxide-nanoporous sapphire substrate,” IEEE Electron. Device Lett., (to be published).
    130. G. D. Sulka and K. Hnida, “Distributed bragg reflector based on porous anodic alumina fabricated by puls anodization,” Nanotechnology, vol. 23, pp. 075303-075311, 2012.
    131. M. H. Doan, H. Lim, J. J. Lee, D. H. Nguyen, F. Rotermund, and S. I. Mho, “Enhanced cathodoluminescence from InGaN/GaN light-emitting diodes with nanohole arrays fabricated using anodic aluminum-oxide masks,” J. Korean Phys. Soc., vol. 57, pp. 1295-1298, 2010.
    132. X. X. Fu, B. Zhang, X. N. Kang, J. J. Deng, C. Xiong, T. Dai, X. Z. Jiang, T. J. Yu, Z. Z. Chen, and G. Y. Zhang, “GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template,” Opt. Express, vol. 19, pp. A1104-A1108, 2011.
    133. T. Dai, B. Zhang, X. Kang, K. Bao, W. Zhao, D. Xu, and Z. Gan, “GaN-based light emitting diodes with large area surface nanostructures patterned by anodic aluminum oxide templates,” Proc. of SPIE, vol. 6910, pp. 69100P-1-69100P-8, 2008.
    134. K. Kim, J. Choi, T. S. Bae, M. Jung, and D. H. Woo, “Enhanced light extraction from nanoporous surfaces of InGaN/GaN-based light emitting diodes,” Jpn. J. Appl. Phys., vol. 46, pp. 6682-6684, 2007.
    135. T. Dai, B. Zhang, X. N. Kang, K. Bao, W. Z. Zhao, D. S. Xu, G. Y. Zhang, and Z. Z. Gan, “Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template,” IEEE photonics Technol. Lett., vol. 20, pp. 1974-1976, 2008.
    136. C. S. Li, S. H. Su, H. Y. Chi, and M. Yokoyama, “Application of highly ordered carbon nanotubes templates to field-emission organic light-emitting diodes,” J. Cryst. Growth, vol. 311, pp. 615-618, 2009.
    137. K. Kim, J. Choi, M. Jung, and D. H. Woo, “Enhanced Fabry-perot interferences from nanoporous surfaces of GaN thin films patterned by anodic alumina templates,” Jpn. J. Appl. Phys., vol. 8, pp. 6354-6356, 2008.
    138. K. Kim, J. Choi, and T. S. Bae, “Anodic nanoclusters of GaN,” Appl. Phys. Lett., vol. 90, pp. 181912-181912-3, 2007.
    139. N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, and K. G. U. Wijayantha, “A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitized nanocrystalline solar cells,” Electrochem. Commun., vol. 2, pp. 658-662, 2000.

    無法下載圖示 校內:2018-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE