簡易檢索 / 詳目顯示

研究生: 龔柏諺
Kung, Po-Yen
論文名稱: 利用表面電漿子共振能量轉移在過渡金屬氧化物半導體中誘導多重量子位元疊加的自旋電子產氫
Modulate 2-Qubits Multiple Superimpose of Spintronic Hydrogen Evolution Induced by Surface Plasmon Resonance Energy Transfer in Transitional Metal Oxide semiconductor
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 114
中文關鍵詞: 自旋電子學表面電漿子共振能量傳遞兩個量子位元分解水產氫氧化鋅
外文關鍵詞: Spintronics, surface plasmon resonance, two qubits, hydrogen production, ZnO
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著替代能源的發展,光學自旋電子器件的注入已針對環保應用進行了大幅嘗試,光學自旋電子將自旋光電子與分解水產氫結合為最強大和有前途的裝置,並研究表面電漿子共振(SPR)在自旋電子傳輸過程中的實際應用。在本文中,通過同時操作和有效控制半導體奈米結構中的自旋電流並結合光電子的自旋來分解水產氫。我們展示了一種全新自旋電子光電化學(SPEC)分解水產氫裝置,該裝置由金或銀奈米粒子(NPs)塗覆在TM:ZnO(TM:Fe,Co)奈米棒(NRs)上形成,並在相干ħ/ −ħ角動量圓偏振光照射下產生自旋電子表面電漿子共振能量轉移。此外,自旋注入表示為在半導體中透過光學和電路兩種路徑去調節自旋電子在界面上的傳輸過程。利用相干ħ/ −ħ角動量圓偏振光照射Au / Fe:ZnO 奈米棒並透過自旋電子表面電漿子共振能量轉移來獲得自旋電子光電化學分解水產氫效率和最大產氫量分別增強為188.36%和1.83×10-3 L / s·m2,比純ZnO奈米棒的分解水產氫效率高約5倍。另一方面,自旋電子也阻止了表面電漿子共振的熱電子傳遞,並在自旋電子光電化學分解水產氫效率的增強中展示了自旋-表面電漿子-電子相互作用中兩個量子位的量子糾纏。在研究中,具有兩個量子位的系統中代表著四個不同位元的任意疊加,這是首次利用量子力學現象來提高自旋電子光電化學分解水產氫效率。最後,我們提供了一種新的方法來挑戰強自旋-表面電漿子-電子相互作用的實用性,並已實現自旋電子技術應用在現實生活的重要里程碑。

    The injection of optical spintronics in semiconductors is a prospect issue as the development of renewable energy application. The spintronics integrating spin-hydrogen generation is the most strong and hopeful device to aim how the utility of surface plasmon resonance (SPR) affects the spintronics transport processes from practical applications. In the study, the effective modulation the spin photocurrent in device by integrating spin-hydrogen generation. We reveal a spintronic-photoelectrochemical (SPEC) hydrogen evolution device composed of gold or silver NPs (nanoparticles) coated on TM:ZnO (TM: Fe, Co) NRs (nanorods) to generate spintronic SPR resonance energy transfer under the circular polarization light of coherent ħ / −ħ radiation. Furthermore, the spin injection is shown in semiconductors through optical and electrical paths to modulate spintronic transport processes across the interface. The SPEC hydrogen evolution efficiency and corresponding maximum hydrogen generation of Au/Fe:ZnO NRs under the circular polarization light of coherent ħ / −ħ radiation are successfully improved up to 188.76% and 1.83×10-3 L/s·m2, respectively, by utilization with the spintronic SPR resonance energy transfer, about five of times as big as pure ZnO NRs. On the other hand, the spintronic also prevent the SPR hot electrons transfer and shows the quantum entanglement of the two qubits during spin-plasmon-electron interactions in the increasement of the SPEC hydrogen evolution efficiency. Here we report the device exploit quantum-mechanical phenomena have 2-Qubits Multiple Superimpose to enhance SPCE hydrogen evolution efficiency. Finally, we supply a new way to challenge the practicality of the strong spin-plasmon-electron interactions and has applied these techniques to achieve an important milestone for developing spintronics to real life.

    摘要 I Abstract III Acknowledgements V Contents VI Figure caption X Table caption XVII 1. Introduction 1 2. Theoretical concepts 8 2.1 Photoelectrochemical (PEC) 8 2.2 ZnO 10 2.3 Surface plasmon resonance (SPR) 11 2.4 Optical spintronic photoelectrochemical for water splitting 13 3. Experimental section 15 3.1 Materials 15 3.2 Preparation of anode electrode 15 3.2.1 Preparation of gold nanoparticles and coating on the anode electrode 16 3.2.2 Preparation of silver nanoparticles and coating on the anode electrode 16 3.3 Preparation of cathode electrode 17 3.4 Preparation of electrolytes 17 3.5 Preparation of spintronic-photoelectrochemical (SPEC) hydrogen production devices 17 3.6 Finite difference time domain (FDTD) simulations 18 3.7 Spintronic-photoelectrochemical (SPEC) hydrogen production from water splitting 19 3.8 Characterization 20 3.8.1 X-ray diffraction (XRD) 20 3.8.2 Multi-function environmental field-emission scanning electron microscope (FE-SEM) 21 3.8.3 Spectrophotometer 22 3.8.4 Transmission electron microscopy (TEM) 23 3.8.5 Electrochemistry analyzer 24 3.8.6 Solor light simulator and laser light source 25 4. Results and discussion 26 4.1 Gold NPs coated on TM:ZnO (TM: Fe, Co) NRs for Spintronic-Photoelectrochemical (SPEC) Hydrogen Production Devices 26 4.1.1 Characteristic Analyzation 26 4.1.2 Spintronic-Photoelectrochemical (SPEC) Water Splitting Properties 35 4.1.3 Finite Difference Time Domain (FDTD) Simulations 45 4.1.4 Quantum Computing and Tomography 48 4.1.5 Scheme of Spintronic-photoelectrochemical (SPEC) hydrogen evaluation device 54 4.2 Silver NPs coated on TM:ZnO (TM: Fe, Co) NRs for Spintronic-Photoelectrochemical (SPEC) Hydrogen Production Devices 57 4.2.1 Characteristic Analyzation 57 4.2.2 Spintronic-Photoelectrochemical (SPEC) Water Splitting Properties 66 4.2.3 Finite Difference Time Domain (FDTD) Simulations 76 4.2.4 Quantum Computing and Tomography 79 4.2.5 Scheme of Spintronic-photoelectrochemical (SPEC) hydrogen evaluation device 85 5. Conclusions 91 Reference 93 List of Publications 111 Journal publications 111 Cover Art 113

    1. Jansen, R., Solar spin devices see the light. Nat. Mater. 2013, 12, (9), 779-780.
    2. Endres, B.; Ciorga, M.; Schmid, M.; Utz, M.; Bougeard, D.; Weiss, D.; Bayreuther, G.; Back, C. H., Demonstration of the spin solar cell and spin photodiode effect. Nature Communications 2013, 4, 1-5.
    3. Kondo, T.; Hayafuji, J. J.; Munekata, H., Investigation of spin voltaic effect in a p-n heterojunction. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2006, 45, (24-28), L663-L665.
    4. Zutic, I.; Fabian, J.; Das Sarma, S., Spin-polarized transport in inhomogeneous magnetic semiconductors: Theory of magnetic/nonmagnetic p-n junctions. Physical Review Letters 2002, 88, (6).
    5. Zutic, I.; Fabian, J.; Das Sarma, S., Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Physical Review B 2001, 64, (12).
    6. Chappert, C.; Fert, A.; Van Dau, F. N., The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, (11), 813-823.
    7. Pierce, D. T.; Meier, F., Photoemission of spin-polarized electrons from GaAs. Physical Review B 1976, 13, (12), 5484-5500.
    8. Zutic, I.; Fabian, J.; Das Sarma, S., Spintronics: Fundamentals and applications. Reviews of Modern Physics 2004, 76, (2), 323-410.
    9. Bottegoni, F.; Celebrano, M.; Bollani, M.; Biagioni, P.; Isella, G.; Ciccacci, F.; Finazzi, M., Spin voltage generation through optical excitation of complementary spin populations. Nat. Mater. 2014, 13, (8), 790-795.
    10. Allenspach, R.; Meier, F.; Pescia, D., Experimental Symmetry Analysis of Electronic States by Spin-Dependent Photoemission. Physical Review Letters 1983, 51, (23), 2148-2150.
    11. Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Ciccacci, F., Epitaxial Si1-xGex alloys studied by spin-polarized photoemission. Physical Review B 2013, 88, (11).
    12. Taniyama, T.; Wada, E.; Itoh, M.; Yamaguchi, M., Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. Npg Asia Materials 2011, 3, 65-73.
    13. Eremeev, S. V.; Tsirkin, S. S.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V., New generation of two-dimensional spintronic systems realized by coupling of Rashba and Dirac fermions. Scientific Reports 2015, 5.
    14. Suto, H.; Nagasawa, T.; Kanao, T.; Yamada, K.; Mizushima, K., Magnetization switching of a perpendicular nanomagnet induced by vertical nonlocal injection of pure spin current. Scientific Reports 2019, 9.
    15. Wu, M. W.; Jiang, J. H.; Weng, M. Q., Spin dynamics in semiconductors. Physics Reports-Review Section of Physics Letters 2010, 493, (2-4), 61-236.
    16. Moayed, M. M. R.; Bielewicz, T.; Zollner, M. S.; Herrmann, C.; Klinke, C., Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets. Nature Communications 2017, 8.
    17. Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V., Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics. Scientific Reports 2014, 4.
    18. Taroni, A., 90 years of the Ising model. Nature Physics 2015, 11, (12), 997-997.
    19. Han, W.; Otani, Y.; Maekawa, S., Quantum materials for spin and charge conversion. Npj Quantum Materials 2018, 3.
    20. Nightingale, M. P.; Blote, H. W. J., Dynamic exponent of the two-dimensional ising model and Monte Carlo computation of the subdominant eigenvalue of the stochastic matrix. Physical Review Letters 1996, 76, (24), 4548-4551.
    21. Trabesinger, A., Quantum leaps, bit by bit. Nature 2017, 543, (7646), S2-S3.
    22. Salaken, S. M. F., E.; Podder, J., Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. Journal of Semiconductors 2013, 34, (7), 073003.
    23. Humayun, Q.; Kashif, M.; Hashim, U.; Qurashi, A., Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors. Nanoscale Research Letters 2014, 9.
    24. Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D., Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18, (3).
    25. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98, (4).
    26. Caglar, Y.; Caglar, M.; Ilican, S.; Aksoy, S.; Yakuphanoglu, F., Effect of channel thickness on the field effect mobility of ZnO-TFT fabricated by sol gel process. Journal of Alloys and Compounds 2015, 621, 189-193.
    27. You, H. C., Transistor characteristics of zinc oxide active layers at various zinc acetate dihydrate solution concentrations of zinc oxide thin-film. Journal of Applied Research and Technology 2015, 13, 291-296.
    28. Katsia, E.; Huby, N.; Tallarida, G.; Kutrzeba-Kotowska, B.; Perego, M.; Ferrari, S.; Krebs, F. C.; Guziewicz, E.; Godlewski, M.; Osinniy, V.; Luka, G., Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Applied Physics Letters 2009, 94, (14).
    29. Suchea, M.; Christoulakis, S.; Moschovis, K.; Katsarakis, N.; Kiriakidis, G., ZnO transparent thin films for gas sensor applications. Thin Solid Films 2006, 515, (2), 551-554.
    30. Xiong, H. M., ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Advanced Materials 2013, 25, (37), 5329-5335.
    31. Yilmaz, S.; McGlynn, E.; Bacaksiz, E.; Cullen, J.; Chellappan, R. K., Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chemical Physics Letters 2012, 525-26, 72-76.
    32. Wang, D. F.; Park, S. Y.; Lee, Y. S.; Lee, Y. P.; Li, J. C.; Liu, C., Synthesis and room-temperature ferromagnetism of Zn0.96Mn0.04O/ZnO coaxial nanocable and Zn0.96Mn0.04O film. Journal of Applied Physics 2008, 103, (7).
    33. Hou, D. L.; Ye, X. J.; Meng, H. J.; Zhou, H. J.; Li, X. L.; Zhen, C. M.; Tang, G. D., Magnetic properties of n-type Cu-doped ZnO thin films. Applied Physics Letters 2007, 90, (14).
    34. Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, (12), 965-974.
    35. Bonanni, A.; Dietl, T., A story of high-temperature ferromagnetism in semiconductors. Chemical Society Reviews 2010, 39, (2), 528-539.
    36. Dietl, T.; Ohno, H., Dilute ferromagnetic semiconductors: Physics and spintronic structures. Reviews of Modern Physics 2014, 86, (1).
    37. Debernardi, A.; Fanciulli, M., Ab initio study of magnetic interaction of Fe doped ZnO with intrinsic vacancies. Applied Physics Letters 2007, 90, (21).
    38. Sato, K.; Katayama-Yoshida, H., Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2000, 39, (6B), L555-L558.
    39. Song, Y. Y.; Park, K. S.; Son, D. V.; Yu, S. C.; Kang, H. J.; Shin, S. W.; Whang, C. N.; Lee, J. H.; Song, J. H.; Lee, K. W., Ferromagnetic behavior above room temperature of Fe-ion-implanted ZnO. Journal of the Korean Physical Society 2007, 50, (6), 1706-1710.
    40. Sygletou, M.; Petridis, C.; Kymakis, E.; Stratakis, E., Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Advanced Materials 2017, 29, (39).
    41. Li, J. T.; Cushing, S. K.; Zheng, P.; Meng, F. K.; Chu, D.; Wu, N. Q., Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nature Communications 2013, 4.
    42. Zhang, P.; Wang, T.; Gong, J. L., Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. Advanced Materials 2015, 27, (36), 5328-5342.
    43. Zheng, Z. K.; Xie, W.; Huang, B. B.; Dai, Y., Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts. Chemistry-a European Journal 2018, 24, (69), 18322-18333.
    44. Boriskina, S. V.; Ghasemi, H.; Chen, G., Plasmonic materials for energy: From physics to applications. Materials Today 2013, 16, (10), 375-386.
    45. Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, (12), 911-921.
    46. Kung, P. Y.; Huang, L. W.; Shen, T. W.; Wang, W. L.; Su, Y. H.; Lin, M. I., Down-conversion photoluminescence sensitizing plasmonic silver nanoparticles on ZnO nanorods to generate hydrogen by water splitting photochemistry. Applied Physics Letters 2015, 106, (2).
    47. Kung, P. Y.; Cai, S. L.; Pan, F.; Shen, T. W.; Su, Y. H., Photonic Fano Resonance of Multishaped Cu2O Nanoparticles on ZnO Nanowires Modulating Efficiency of Hydrogen Generation in Water Splitting Cell. Acs Sustainable Chemistry & Engineering 2018, 6, (5), 6590-6598.
    48. Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E., Generation of spin currents by surface plasmon resonance. Nature Communications 2015, 6.
    49. Sreeja, S.; Pesala, B., Plasmonic enhancement of betanin-lawsone co-sensitized solar cells via tailored bimodal size distribution of silver nanoparticles. Scientific Reports 2020, 10, (1).
    50. Nan, F.; Ding, S. J.; Ma, L.; Cheng, Z. Q.; Zhong, Y. T.; Zhang, Y. F.; Qiu, Y. H.; Li, X. G.; Zhou, L.; Wang, Q. Q., Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 2016, 8, (32), 15071-15078.
    51. Roller, E. M.; Besteiro, L. V.; Pupp, C.; Khorashad, L. K.; Govorov, A. O.; Liedl, T., Hotspot-mediated non-dissipative and ultrafast plasmon passage. Nature Physics 2017, 13, (8), 761-+.
    52. Zhang, L. W.; Herrmann, L. O.; Baumberg, J. J., Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting. Scientific Reports 2015, 5.
    53. Zhao, F. W.; Li, Y.; Wang, Z. Y.; Yang, Y.; Wang, Z.; He, G. Y.; Zhang, J. Q.; Jiang, L.; Wang, T. S.; Wei, Z. X.; Ma, W.; Li, B.; Xia, A. D.; Li, Y. F.; Wang, C. R., Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials 2017, 7, (13).
    54. Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q., Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics 2015, 9, (9), 601-+.
    55. Chen, M. M.; Wang, Y.; Cheng, S. B.; Wen, W.; Zhang, X. H.; Wang, S. F.; Huang, W. H., Construction of Highly Efficient Resonance Energy Transfer Platform Inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection. Analytical Chemistry 2018, 90, (8), 5075-5081.
    56. Wu, K.; Chen, J.; McBride, J. R.; Lian, T., Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, (6248), 632-635.
    57. Furube, A.; Hashimoto, S., Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. Npg Asia Materials 2017, 9.
    58. Bhatta, H. L.; Aliev, A. E.; Drachev, V. P., New mechanism of plasmons specific for spin-polarized nanoparticles. Scientific Reports 2019, 9.
    59. O'Connor, D.; Ginzburg, P.; Rodriguez-Fortuno, F. J.; Wurtz, G. A.; Zayats, A. V., Spin-orbit coupling in surface plasmon scattering by nanostructures. Nature Communications 2014, 5.
    60. Andreev, P. A., Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance. Physical Review E 2015, 91, (3).
    61. Zhang, H. J.; Chen, G. H.; Bahnemann, D. W., Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry 2009, 19, (29), 5089-5121.
    62. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414, 338–344.
    63. Minggu, L. J.; Daud, W. R. W.; Kassim, M. B., An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 2010, 35, (11), 5233-5244.
    64. Jing, D. W.; Guo, L. J.; Zhao, L. A.; Zhang, X. M.; Liu, H. A.; Li, M. T.; Shen, S. H.; Liu, G. J.; Hu, X. W.; Zhang, X. H.; Zhang, K.; Ma, L. J.; Guo, P. H., Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. International Journal of Hydrogen Energy 2010, 35, (13), 7087-7097.
    65. Chen, C. Y.; Yeh, K. L.; Lo, Y. C.; Wang, H. M.; Chang, J. S., Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. International Journal of Hydrogen Energy 2010, 35, (24), 13356-13364.
    66. Ozmihci, S.; Kargi, F., Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. International Journal of Hydrogen Energy 2010, 35, (13), 6674-6680.
    67. Sang, L. X.; Zhang, Z. Y.; Ma, C. F., Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. International Journal of Hydrogen Energy 2011, 36, (8), 4732-4738.
    68. Andrade, L.; Lopes, T.; Ribeiro, H. A.; Mendes, A., Transient phenomenological modeling of photoelectrochemical cells for water splitting - Application to undoped hematite electrodes. International Journal of Hydrogen Energy 2011, 36, (1), 175-188.
    69. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chemical Reviews 2010, 110, (11), 6446-6473.
    70. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110, (11), 6503-6570.
    71. Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A., High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science 2010, 330, (6012), 1797-1801.
    72. Coelho, B.; Oliveira, A. C.; Mendes, A., Concentrated solar power for renewable electricity and hydrogen production from water-a review. Energy & Environmental Science 2010, 3, (10), 1398-1405.
    73. Khaselev, O.; Turner, J. A., A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, (5362), 425-427.
    74. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy 2002, 27, (10), 991-1022.
    75. Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Lin, Y. K.; Chen, L. C.; Chen, K. H., Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst. Angewandte Chemie-International Edition 2009, 48, (41), 7586-7590.
    76. Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Chen, L. C.; Chen, K. H., Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production. Journal of Materials Chemistry 2011, 21, (2), 324-326.
    77. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y. P.; Zhang, J. Z., Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting. Advanced Functional Materials 2009, 19, (12), 1849-1856.
    78. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S., Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes. Science 2010, 327, (5962), 185-187.
    79. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter 2004, 16, (25), R829-R858.
    80. Gruzintsev, A. N.; Yakimov, E. E., Annealing effect on the luminescent properties and native defects of ZnO. Inorganic Materials 2005, 41, (7), 725-729.
    81. Tonezzer, M.; Lacerda, R. G., Integrated zinc oxide nanowires/carbon microfiber gas sensors. Sensors and Actuators B-Chemical 2010, 150, (2), 517-522.
    82. Bahadur, L.; Rao, T. N., Photoelectrochemical studies of cobalt-doped ZnO sprayed thin film semiconductor electrodes in acetonitrile medium. Solar Energy Materials and Solar Cells 1992, 27, (4), 347-360.
    83. Jakani, M.; Campet, G.; Claverie, J.; Fichou, D.; Pouliquen, J.; Kossanyi, J., Photoelectrochemical properties of zinc oxide doped with 3d elements. Journal of Solid State Chemistry 1985, 56, (3), 269-277.
    84. van de Krol, R.; Liang, Y. Q.; Schoonman, J., Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry 2008, 18, (20), 2311-2320.
    85. Chu, D. W.; Masuda, Y.; Ohji, T.; Kato, K., Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution. Langmuir 2010, 26, (4), 2811-2815.
    86. Tahir, A. A.; Wijayantha, K. G. U., Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. Journal of Photochemistry and Photobiology a-Chemistry 2010, 216, (2-3), 119-125.
    87. Wu, X. J.; Quan, B. G.; Pan, X. C.; Xu, X. L.; Lu, X. C.; Xia, X. X.; Li, J. J.; Gu, C. Z.; Wang, L., Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials. Applied Optics 2013, 52, (20), 4877-4883.
    88. Stratakis, E.; Stylianakis, M. M.; Koudoumas, E.; Kymakis, E., Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale 2013, 5, (10), 4144-4150.
    89. Huang, L. L.; Chen, X. Z.; Bai, B. F.; Tan, Q. F.; Jin, G. F.; Zentgraf, T.; Zhang, S., Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light-Science & Applications 2013, 2.
    90. Chiappe, D.; Toma, A.; de Mongeot, F. B., Transparent Plasmonic Nanowire Electrodes via Self-Organised Ion Beam Nanopatterning. Small 2013, 9, (6), 913-919.
    91. Chen, H. Y.; Liu, K. W.; Jiang, M. M.; Zhang, Z. Z.; Liu, L.; Li, B. H.; Xie, X. H.; Wang, F.; Zhao, D. X.; Shan, C. X.; Shen, D. Z., Tunable Hybridized Quadrupole Plasmons and Their Coupling with Excitons in ZnMgO/Ag System. Journal of Physical Chemistry C 2014, 118, (1), 679-684.
    92. Chen, X.; Jia, B. H.; Zhang, Y. A.; Gu, M., Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light-Science & Applications 2013, 2.
    93. Lozano, G.; Louwers, D. J.; Rodriguez, S. R. K.; Murai, S.; Jansen, O. T. A.; Verschuuren, M. A.; Rivas, J. G., Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light-Science & Applications 2013, 2.
    94. Su, Y. H.; Ke, Y. F.; Cai, S. L.; Yao, Q. Y., Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light-Science & Applications 2012, 1.
    95. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z., Nanomaterials for energy conversion and storage. Chemical Society Reviews 2013, 42, (7), 3127-3171.
    96. Zhang, Y. Y.; Mu, J., One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. Journal of Colloid and Interface Science 2007, 309, (2), 478-484.
    97. Roy, R. K.; Bandyopadhyaya, S.; Pal, A. K., Surface plasmon resonance in nanocrystalline silver in a ZnO matrix. European Physical Journal B 2004, 39, (4), 491-498.
    98. Prokes, S. M.; Glembocki, O. J.; Rendell, R. W.; Ancona, M. G., Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy. Applied Physics Letters 2007, 90, (9).
    99. Qi, H.; Alexson, D.; Glembocki, O.; Prokes, S. M., Plasmonic coupling on dielectric nanowire core-metal sheath composites. Nanotechnology 2010, 21, (8).
    100. Sivan, A. K.; Di Mario, L.; Catone, D.; O'Keeffe, P.; Turchini, S.; Rubini, S.; Martelli, F., Plasmon-induced resonant effects on the optical properties of Ag-decorated ZnSe nanowires. Nanotechnology 2020, 31, (17).
    101. Ding, W. D.; Hsu, L. Y.; Schatz, G. C., Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. Journal of Chemical Physics 2017, 146, (6).
    102. Wang, C. Z.; Chen, Z.; He, Y.; Li, L. Y.; Zhang, D., Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system. Applied Surface Science 2009, 255, (15), 6881-6887.
    103. Han, B. S.; Uhm, Y. R.; Kim, G. M.; Rhee, C. K., Novel synthesis of nanorod ZnO and Fe-Doped ZnO by the hydrolysis of metal powders. Journal of Nanoscience and Nanotechnology 2007, 7, (11), 4158-4160.
    104. Habba, Y. G.; Capochichi-Gnambodoe, M.; Leprince-Wang, Y., Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification. Applied Sciences-Basel 2017, 7, (11).
    105. Miron, I. M.; Gaudin, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Gambardella, P., Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 2010, 9, (3), 230-234.

    下載圖示
    2025-12-19公開
    QR CODE