簡易檢索 / 詳目顯示

研究生: 廖慶祥
Liao, Ching-Hsiang
論文名稱: 利用醋酸蝕刻製備孔洞氧化鋅薄膜及壓電奈米發電機之應用
Preparation of porous ZnO thin films by acidic etching and its application to piezoelectric nanogenerators
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: 多孔氧化鋅薄膜壓電奈米發電機極性極性反轉酸蝕刻
外文關鍵詞: porous ZnO film, piezoelectric nanogenerator, polarity, polarity inversion, acidic etching
相關次數: 點閱:153下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於人類科技高度發展以及人口大量增長,對於石油能源需求日益增加,為了減少對石油能源的依賴性,發展可再生能源以取代石油能源需求成為了科學研究中重要的領域之一。在人類生活中,機械能經常透過走路、跑步、點擊滑鼠等形式產生,這些無意間產生的機械能很容易被忽略且日常生活中可源源不斷產生,而利用壓電奈米發電機將機械能收集起來並轉化為電能做使用則是一種常被研究的方法。

    氧化鋅作為典型的壓電材料以及具有半導體特性,經常被用來製備壓電奈米發電機,但因其低下的壓電係數(12.4 pm/V),相較於其他壓電材料遜色不少,因此會透過材料改質的方式來提高壓電輸出,例如摻雜,形成PN接面,基板施加預應力等。此外,孔洞化也是其中一種改質方法,透過孔洞化可以降低壓電材料的楊式係數以及增強應力限制效應,這兩點都可以提升元件的壓電輸出,並且降低壓電材料的楊式係數則可使壓電奈米發電機的設計朝可撓式元件發展,更符合現代趨勢。再者,孔洞化也可以提高氧化鋅薄膜材料的比表面積,這對於氣體感測、光降解的應用是有益的。

    本研究中透過醋酸蝕刻的方式製備出多孔氧化鋅薄膜,經由奈米壓痕量測後確認楊氏係數隨著孔洞率增加而下降,且透過AFM電性量測發現在蝕刻時間為5分鐘時薄膜具有最高的壓電係數,其也顯示了適當的孔洞率可以提升材料的壓電性質。在壓電輸出部分,蝕刻5分鐘的氧化鋅薄膜展現出了最大的電壓以及電流輸出,峰值分別可以達到約18mV以及40nA,相較於退火氧化鋅薄膜,分別提升了約4.5倍以及2.35倍。蝕刻時間超過5分鐘時,其輸出呈現大幅下降的趨勢,再次說明孔洞的改質依舊存在最佳孔洞率,並非多多益善。

    In this research, we successfully fabricated porous ZnO thin films by acidic etching. By controlling etching time, ZnO films with different degrees of porosity were obtained. From nano-indenter test, the Young’s modulus decreases as the increase of porosity if ignoring substrate effect. The FWHM of ZnO (002) peak increases results from the micro-strain due to etching. From IV curves, the change of Schottky barrier height is largest in etched ZnO films for 5 mins, which implies it has the largest piezoelectric coefficient. Besides, the trend of the force-dependent iv curves for as-grown and etched ZnO films is opposite due to the reverse of polarity. The as-grown ZnO films demonstrate oxygen-terminated polarity while etched ZnO films exhibit zinc-terminated polarity. The reverse of polarity results from the difference of tolerance of etching between Zn-polar and O-polar ZnO grains. The polarity of annealed and etched porous ZnO films is confirmed by XPS. The lattice constant of ZnO decreases due to the pore effect. Finally, we also fabricated the ZnO piezoelectric nanogenerators to check the output. The output of PENG obtained great improvement when etching time is 5 mins. the voltage and current output for etching 5 mins are about 4.5 and 2.35 times of that of as-grown ZnO. However, too much pores will lead to the decrease of piezoelectric output voltages, which implies that the porosity needs to be controlled carefully.

    摘要 I Extended abstract II 致謝 XVIII 目錄 XIX 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 氧化鋅 4 2.1.1 基本介紹 4 2.1.2 晶體結構與性質 7 2.2 壓電性質 10 2.2.1 壓電效應 10 2.2.2 壓電常數 13 2.3 壓電電子學 15 2.3.1 壓電電子學理論 15 2.3.2 壓電電子效應應用 23 2.4 壓電奈米發電機 29 2.4.1 壓電奈米發電機基本原理 29 2.4.2 壓電奈米發電機發展歷史 32 2.4.3 孔洞壓電奈米發電機 37 2.5 孔洞氧化鋅壓電奈米發電機 43 2.5.1 孔洞氧化鋅奈米線 43 2.5.2 孔洞氧化鋅薄膜 44 2.6 蝕刻氧化鋅 48 第三章 實驗步驟與分析 50 3.1 實驗步驟流程 50 3.1.1 基板清潔 51 3.1.2 濺鍍氧化鋅薄膜 52 3.1.3 後退火處理 53 3.1.4 酸蝕刻處理 54 3.2 薄膜性質分析 55 3.2.1 晶體結構分析 55 3.2.2 表面形貌分析 56 3.2.3 機械性質分析 57 3.2.4 薄膜電性分析 59 3.2.5 微結構分析 61 3.2.6 壓電奈米發電機輸出量測 63 第四章 實驗結果與討論 65 4.1 晶體結構分析 65 4.2 表面形貌分析 68 4.3 機械性質分析 73 4.4 微結構分析 76 4.5 薄膜電性分析 81 4.6 薄膜極性分析 89 4.7 壓電元件輸出分析 91 第五章 結論 101 第六章 未來方向 102 第七章 參考文獻 103

    [1] Li-Cheng Cheng, Sanjaya Brahma, Jow-Lay Huang, Chuan-Pu Liu, Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films, Materials Science in Semiconductor Processing, Volume 146, 106703, 2022.
    [2] Yang Hyeog Kwon, Doo-Hee Kim, Han-Ki Kim, Junghyo Nah, Phosphorus-doped zinc oxide p–n homojunction thin film for flexible piezoelectric nanogenerators, Nano Energy, Volume 18, Pages 126-132, 2015.
    [3] Hong Je Choi, Ye Seul Jung, Ju Han, Yong Soo Cho, In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure, Nano Energy, Volume 72, 104735, 2020.
    [4] Jinbo Xue, Han Zhang, Qianqian Shen, Wenjin Zhang, Jiaqi Gao, Qi Li, Xuguang Liu, Husheng Jia, Enhanced photoelectrocatalytic hydrogen production performance of porous MoS2/PPy/ZnO film under visible light irradiation, International Journal of Hydrogen Energy, Volume 46, Issue 71, Pages 35219-35229, 2021.
    [5] Huang Jinyu, Du Yu, Wang Quan, Zhang Hao, Geng Youfu, Li Xuejin, Tian Xiaoqing, UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film, Sensors (Basel, Switzerland), 18, 2017.
    [6] Su Yu-Lun, Gupta Kapil, Hsiao Yu-Liang, Wang Ruey-chi, Liu Chuan-Pu, Gigantic Enhancement in Electricity Generation in Piezoelectric Semiconductors by Creating Pores as a Universal Approach. Energy & Environmental Science, 14, 2019.
    [7] Parmanand Sharma, Abhai Mansingh, and K. Sreenivas, Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering, Appl. Phys. Lett. 80, 553-555, 2002.
    [8] Yi-Feng Lai, Jun-Han Huang, Yen-Chih Chen, Chuan-Pu Liu, Yaw-Wen Yang, Growth of large-area non-polar ZnO film without constraint to substrate using oblique-angle sputtering deposition, Journal of the European Ceramic Society, Volume 33, Issue 10, Pages 1809-1814, 2013.
    [9] Li, L.; Gao, W.; Reeves, R.J., Zinc oxide films by thermal oxidation of zinc thin films, Surf. Coat. Technol, 198, 319–323, 2005.
    [10] A. Lamberti, A. Sacco, M. Laurenti, M. Fontana, C.F. Pirri, S. Bianco, Sponge-like ZnO nanostructures by low temperature water vapor-oxidation method as dye-sensitized solar cell photoanodes, Journal of Alloys and Compounds, Volume 615, Supplement 1, Pages S487-S490, 2014.
    [11] Cheng-Liang Hsu, Kuan-Chao Chen, Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency. . Phys. Chem. C, 116, 16, 9351–9355, 2012.
    [12] Wen-Yang Chang, Te-Hua Fang, Cheng-I Weng, Shin-Shing Yang, Flexible piezoelectric harvesting based on epitaxial growth of ZnO, Appl Phys A, 102, 705–711, 2011.
    [13] Ping-Che Lee, Yu-Liang Hsiao, Jit Dutta, Ruey-Chi Wang, Shih-Wen Tseng, Chuan-Pu Liu, Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors, Nano Energy, Volume 82, 105702, 2021.
    [14] Rossana Gazia, Paolo Motto, Stefano Stassi, Adriano Sacco, Alessandro Virga, Andrea Lamberti, Giancarlo Canavese, Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures, Nano Energy, Volume 2, Issue 6, Pages 1294-1302, 2013.
    [15] Laurenti M, Canavese G, Stassi S, et al, A porous nanobranched structure: an effective way to improve piezoelectricity in sputtered ZnO thin films, RSC Adv, 6, 76996–77004, 2016.
    [16] Sahil Goel, Binay Kumar, A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures, Journal of Alloys and Compounds, Volume 816, 152491, 2020.
    [17] Ping Rong, Shuai Ren, Qi Yu, Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review, Critical Reviews in Analytical Chemistry, 49:4, 336-349, 2019.
    [18] Wang, Zhong, Nanopiezotronics, Advanced Materials, 19, 889 – 892, 2007.
    [19] Hu, Y., Chang, Y., Fei, P., Snyder, R. L., & Wang, Z. L. . Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects. ACS Nano, 4(2), 1234-1240, 2010.
    [20] Kołodziejczak-Radzimska, A., & Jesionowski, T. . Zinc Oxide—From Synthesis to Application: A Review. Materials, 7, 2014.
    [21] Wang, Z.L., Wu, W., Falconi, C, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bulletin, 2018.
    [22] Geurts J., Crystal Structure, Chemical Binding, and Lattice Properties.
    [23] Huang, R., et al., Progress of zinc oxide-based nanocomposites in the textile industry, IET Collab. Intell. Manuf, 3(3), 281– 289, 2021.
    [24] M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. Hukka, N. Tkachenko and T. Rantala , Porphyrin adsorbed on the (10 0) surface of the wurtzite structure of ZnO – conformation induced effects on the electron transfer characteristics, Phys. Chem. Chem. Phys., 15, 17408—17418, 2013.
    [25] Farahbod, Farshad, Farahmand, Sara, Empirical Investigation of Heating and Kinematic Performance of ZnO Nano Fluid in a Heat Pipe, Journal of Nanofluids, 6, 128-135, 2017.
    [26] Tichý, J., Erhart, J., Kittinger, E., Přívratská, J., Principles of Piezoelectricity. In: Fundamentals of Piezoelectric Sensorics. Springer, Berlin, Heidelberg, 2010.
    [27] Erhart, J., Půlpán, P., Pustka, M, Piezoelectricity and Piezoelectric Properties. In: Piezoelectric Ceramic Resonators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham, 2017.
    [28] Mishra, S., Unnikrishnan, L., Nayak, S. K., Mohanty, S., Macromol. Mater. Eng., 1800463,2018.
    [29] Y. F. Gao, Z. L. Wang, Electrostatic Potential in a Bent Piezoelectric Nanowire.The Fundamental Theory of Nanogenerator and Nanopiezotronics Nano Lett, 7, 2499-2505, 2007.
    [30] Wang, Z.L., Progress in Piezotronics and Piezo-Phototronics, Adv. Mater., 24, 4632-4646, 2012.
    [31] Priya, S., Song, H., Zhou, Y., Varghese, R., Chopra, A., Kim, S., Kanno, I., Wu, L., Ha, D., Ryu, J. and Polcawich, R., A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits, Energy Harvesting and Systems, Vol. 4 (Issue 1), pp. 3-39, 2017.
    [32] Caofeng Pan, Junyi Zhai, and Zhong Lin Wang, Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires, Chemical Reviews, 119(15), 9303-9359, 2019.
    [33] Zhang, Y., Liu, Y. and Wang, Z.L., Fundamental Theory of Piezotronics. Adv. Mater., 23, 3004-3013, 2011.
    [34] Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., & Wang, Z. L.. Flexible Piezotronic Strain Sensor. Nano Letters, 8(9), 3035-3040, 2008
    [35] Pan, C., Yu, R., Niu, S., Zhu, G., & Wang, Z. L.. Piezotronic Effect on the Sensitivity and Signal Level of Schottky Contacted Proactive Micro/Nanowire Nanosensors. ACS Nano, 7(2), 1803-1810, 2013.
    [36] Wang, Z. L., & Song, J.. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242-246, 2006.
    [37] Wang, Z. L.. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Advanced Functional Materials, 18(22), 3553-3567, 2008.
    [38] Wang, X., Song, J., Liu, J., & Wang, Z. (2007). Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science (New York, N.Y.), 316, 102-105, 2007.
    [39] Park, K.-I., Lee, M., Liu, Y., Moon, S., Hwang, G.-T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L. and Lee, K.J., Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Adv. Mater., 24: 2999-3004, 2012.
    [40] Ni, Xia & Wang, Fei & Lin, Anan & Xu, Qi & Yang, Zhi & Qin, Yong. Flexible Nanogenerator Based on Single BaTiO3 Nanowire. Science of Advanced Materials. 5. 1781-1787, 2013.
    [41] Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters, 10(2), 726-731.
    [42] Jeong, C. K., Baek, C., Kingon, A. I., Park, K.-I., & Kim, S.-H.. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. Small, 14(19), 1704022, 2018.
    [43] Azam Khan, Mazhar Ali Abbasi, Mushtaque Hussain, Zafar Hussain Ibupoto, Jonas Wissting, Omer Nur, and Magnus Willander, Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric, Appl. Phys. Lett. 101, 193506, 2012.
    [44] Zhu, G., Yang, R., Wang, S., & Wang, Z. L.. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters, 10(8), 3151-3155, 2010.
    [45] Sinha, N., Goel, S., Joseph, A. J., Yadav, H., Batra, K., Gupta, M. K., & Kumar, B.. Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceramics International, 44(7), 8582-8590, 2018.
    [46] Hsu, C.-L., Su, I. L., & Hsueh, T.-J.. Sulfur-doped-ZnO-nanospire-based transparent flexible nanogenerator self-powered by environmental vibration. RSC Advances, 5(43), 34019-34026, 2015.
    [47] Liu, C., Yu, A., Peng, M., Song, M., Liu, W., Zhang, Y., & Zhai, J. . Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification. The Journal of Physical Chemistry C, 120(13), 6971-6977, 2016.
    [48] Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55, 288-304.
    [49] Cha, S., Kim, S. M., Kim, H., Ku, J., Sohn, J. I., Park, Y. J., Song, B. G., Jung, M. H., Lee, E. K., Choi, B. L., Park, J. J., Wang, Z. L., Kim, J. M., & Kim, K.. Porous PVDF As Effective Sonic Wave Driven Nanogenerators. Nano Letters, 11(12), 5142-5147, 2011.
    [50] Liu, W., Liu, W., Wang, Y., Xue, C., Wang, J., & Yang, J. . Piezoelectric and mechanical properties of CaO reinforced porous PZT ceramics with one-dimensional pore channels. Ceramics International, 43(2), 2063-2068, 2017.
    [51] H. Nazeer, M.D. Nguyen, O.S. Sukas, G. Rijnders, L. Abelmann, M.C. ElwenspoekCompositional dependence of the young's modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited pzt thin films J. Microelectromech. Syst., 24 , pp. 166-173, 2015.
    [52] Stassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G.. Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474-481, 2015.
    [53] Mahanty, B., Ghosh, S. K., Garain, S., & Mandal, D.. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer. Materials Chemistry and Physics, 186, 327-332, 2017.
    [54] Kim, Y.-S., Xie, Y., Wen, X., Wang, S., Kim, S. J., Song, H.-K., & Wang, Z. L.. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy, 14, 77-86, 2015.
    [55] Rajasekaran Ganeshkumar, Chin Wei Cheah, Ruize Xu, Sang-Gook Kim, and Rong Zhao, A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers, Appl. Phys. Lett. 111, 013905, 2017,
    [56] Zhang, Y., Bowen, C. R., & Deville, S.. Ice-templated poly(vinylidene fluoride) ferroelectrets. Soft Matter, 15(5), 825-832, 2019.
    [57] Abolhasani, M. M., Naebe, M., Shirvanimoghaddam, K., Fashandi, H., Khayyam, H., Joordens, M., Pipertzis, A., Anwar, S., Berger, R., Floudas, G., Michels, J., & Asadi, K.. Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators. Nano Energy, 62, 594-600, 2019.
    [58] Zhang, Y. Z., Wu, M. J., Zhu, Q. Y., Wang, F. Y., Su, H. X., Li, H., Diao, C. L., Zheng, H. W., Wu, Y. H., Wang, Z. L., Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System. Adv. Funct. Mater., 29, 1904259, 201
    [59] Shang, C., Thimont, Y., Barnabé, A., Presmanes, L., Pasquet, I., & Tailhades, P. . Detailed microstructure analysis of as-deposited and etched porous ZnO films. Applied Surface Science, 344, 242-248, 2015.
    [60] Liang, Z., Gao, R., Lan, J.-L., Wiranwetchayan, O., Zhang, Q., Li, C., & Cao, G. . Growth of vertically aligned ZnO nanowalls for inverted polymer solar cells. Solar Energy Materials and Solar Cells, 117, 34-40, 2013.
    [61] Chen, L.-Y., Chen, W.-H., Wang, J.-J., Hong, F. C.-N., & Su, Y.-K.. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Applied Physics Letters, 85(23), 5628-5630, 2004.
    [62] Kong, L., Ostadhassan, M., Zamiran, S., Liu, B., Li, C., & Marino, G. G.. Geomechanical Upscaling Methods: Comparison and Verification via 3D Printing. Energies, 12(3), 2019.
    [63] Šutka, A., Sherrell, P.C., Shepelin, N.A., Lapčinskis, L., Mālnieks, K. and Ellis, A.V., Measuring Piezoelectric Output—Fact or Friction?. Adv. Mater., 33: 2105662, 2021.
    [64] Scherrer, P.. "Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen." Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 98-100, 1918.
    [65] BR York, “New X-ray Diffraction Line Profile Function Based on Crystallite Size and Strain Distributions Determined from Mean Field Theory and Statistical Mechanics”, Advances in X-ray Diffraction 41, 1997.
    [66] Brunauer, S., Emmett, P. H., & Teller, E.. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319, 1938.
    [67] Panneton R., Gros E., A missing mass method to measure the open porosity of porous solids, Acta Acustica 91, pp. 342-348, 2005.
    [68] Tang, C., Spencer, M. J. S., & Barnard, A. S.. Activity of ZnO polar surfaces: an insight from surface energies. Physical Chemistry Chemical Physics, 16(40), 22139-22144, 2014.
    [69] Ching, K.-L., Li, G., Ho, Y.-L., & Kwok, H.-S. . The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes. CrystEngComm, 18(5), 779-786, 2016.
    [70] S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond and V. Consonni, Formation Mechanisms of ZnO Nanowires: the Crucial Role of Crystal Orientation and Polarity, J. Phys. Chem. C, 117, 20738–20745, 2013.
    [71] V. Consonni, E. Sarigiannidou, E. Appert, A. Bocheux, S. Guillemin, F. Donatini, I. Robin, J. Kioseoglou and F. Robaut, Selective Area Growth of Well-Ordered ZnO Nanowire Arrays with Controllable Polarity, ACS Nano, 8, 4761–4770, 2014.
    [72] Hüpkes, J., Owen, J. I., Pust, S. E., & Bunte , E. . Chemical Etching of Zinc Oxide for Thin-Film Silicon Solar Cells. ChemPhysChem, 13(1), 66-73, 2012.
    [73] Zhang, W.-W., Yu, H., Lei, S.-Y., & Huang, Q.-A. . Modelling of the elastic properties of crystalline silicon using lattice dynamics. Journal of Physics D: Applied Physics, 44, 335401, 2011.
    [74] Kobiakov, I. B. . Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Communications, 35(3), 305-310, 1980.
    [75] Kováčik, J. (1999). Correlation between Young's Modulus and Porosity in Porous Materials. Journal of Materials Science Letters, 18, 1007-1010.
    [76] Herbert B. Michaelson , "The work function of the elements and its periodicity", Journal of Applied Physics 48, 4729-4733, 1977.
    [77] Sundaram, K.B. Work function determination of zinc oxide films. J. Vac. Sci. Technol. A: Vac. Surf. Films, 15, 428–430, 1997.
    [78] S.V. Kalilin, E. Kawapetian, M. Kachalov Phys. Rev. B, 70, p. 184101, 2004
    [79] U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morko J. Appl. Phys., 98, p. 041301, 2005.
    [80] Yan, X., Li, Z., Chen, R., & Gao, W. . Template Growth of ZnO Nanorods and Microrods with Controllable Densities. Crystal Growth & Design, 8(7), 2406-2410, 2008.
    [81] Mei, Z. X., Wang, Y., Du, X. L., Ying, M. J., Zeng, Z. Q., Zheng, H., Jia, J. F., Xue, Q. K., & Zhang, Z. . Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate. Journal of Applied Physics, 96(12), 7108-7111, 2004.
    [82] Wang, Y., Xu, Q. Y., Du, X. L., Mei, Z. X., Zeng, Z. Q., Xue, Q. K., & Zhang, Z. . Determination of the polarity of ZnO thin films by electron energy-loss spectroscopy. Physics Letters A, 320(4), 322-326, 2004.
    [83] Williams, J., Yoshikawa, H., Ueda, S., Yamashita, Y., Kobayashi, K., Adachi, Y., Haneda, H., Ohgaki, T., Miyazaki, H., Ishigaki, T., & Ohashi, N. . Polarity-dependent photoemission spectra of wurtzite-type zinc oxide. Applied Physics Letters, 100(5), 051902, 2012.
    [84] Williams, J. R., Furukawa, H., Adachi, Y., Grachev, S., Søndergård, E., & Ohashi, N. . Polarity control of intrinsic ZnO films using substrate bias. Applied Physics Letters, 103(4), 042107, 2013.
    [85] Wang, Z. L. . On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74-82, 2017.
    [86] Popov V. P. The Principles of Theory of Circuits. – M.: Higher School, 496 p, 1985.
    [87] Floyd, Thomas, Principles of Electric Circuits (5th ed.), Prentice Hall, 1997.
    [88] Vegesna, S. V., Bhat, V. J., Bürger, D., Dellith, J., Skorupa, I., Schmidt, O. G., & Schmidt, H. . Increased static dielectric constant in ZnMnO and ZnCoO thin films with bound magnetic polarons. Scientific Reports, 10(1), 6698, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE