簡易檢索 / 詳目顯示

研究生: 楊政賢
Yang, Cheng-Hsien
論文名稱: 鋁氫化鎂儲氫材料的釋氫行為與性質改善研究
Dehydrogenation Behavior of Magnesium Aluminum Hydride and Improvement on Its Hydrogen Desorption Performance
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 鋁氫化鎂鋁氫化鈉多壁奈米碳管機械化學合成法臨場同步X光繞射分析
外文關鍵詞: magnesium aluminum hydride, sodium aluminum hydride, multi-walled carbon nanotubes, mechano-chemical activation synthesis, In-situ synchrotron X-ray diffraction
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討鋁氫化鎂儲氫材料的製備與釋氫性質分析,另外,尋找較佳的添加劑以降低其釋氫溫度與發揮高釋氫量特性。鋁氫化鎂儲氫材料擁有高理論重量氫密度9.3 wt%,起始釋氫溫度140–200 °C,釋出氫氣純度高,具有作為移動式氫能源使用的潛力。研究中透過乾式機械化學合成法,球磨鋁氫化鈉與氯化鎂可合成鋁氫化鎂及副產物氯化鈉,製作之鋁氫化鎂以X光繞射分析組成相的結晶結構,掃瞄式電子顯微鏡觀察其表面形貌,熱重法分析釋氫性質,並配合臨場同步X光繞射法了解釋氫過程中的相轉變而推導反應式。
    實驗結果顯示,合成過程中球磨時間與球粉比等製程參數必須適當地控制,當球磨時間僅0.1小時,粉體因置換反應不完全而殘留前驅反應物鋁氫化鈉;而球磨時間大於5小時,合成的鋁氫化鎂則因過度球磨引起高溫而提前分解釋氫;純度最高的鋁氫化鎂來自於0.5至2小時的球磨處理。鋁氫化鎂的熱分解釋氫過程包含二步驟反應,依序為依序為起始於170 °C的Mg(AlH4)2 → β-MgH2 + 2 Al + 3 H2與305 °C的β-MgH2 + 2 Al → 0.5 Mg2Al3 + 0.5 Al(Mg) + H2,總釋氫量 (包含氯化鈉) 為2.75 wt%,約為理論氫含量的71%。相較於前驅反應物鋁氫化鈉的起始釋氫溫度210 °C,經材料改質後的釋氫溫度已獲得改善,惟釋氫量亦由鋁氫化鈉的4.50 wt% 下降至 2.75 wt%。
    藉由控制不同莫耳比的前驅物,於機械化學置換後,能獲得不同莫耳比例的鋁氫化鈉–鋁氫化鎂混合氫化物。研究結果發現,鋁氫化鈉不僅能降低鋁氫化鎂的第一階段釋氫反應溫度,有助提升整體的釋氫量;此外,氫化鎂或鋁等分解產物亦具有催化鋁氫化鈉的釋氫反應的效果,降低其起始釋氫反應溫度。合成的鋁氫化鈉–鋁氫化鎂混合氫化物起始釋氫溫度最低達125 °C,鋁氫化鈉反應溫度最低達184 °C,總釋氫量隨鋁氫化鈉含量提升而增加,最高至3.55 wt%,並具有0.90 wt% 的可逆吸放氫量。除了互相催化釋氫反應的效應,釋氫反應途徑亦改變,詳細的反應式修正將在本文討論。
    經球磨方式混合5–20 wt% 的多壁奈米碳管於合成的鋁氫化鎂,釋氫反應溫度降低的現象最為顯著,鋁氫化鎂由原本的170 °C最低降至70 °C。少量的奈米碳管 (5 w%) 添加於鋁氫化鎂,即具有催化鋁氫化鎂的釋氫反應,雖然在球磨混合過程中造成部分熱分解釋氫損失,但配合縮短球磨混合時間,能有效減少球磨的氫含量損失,釋氫量最高仍能維持在2.35 wt%。鋁氫化鎂反應溫度降低推測是與多孔結構的多壁奈米碳管添加,有助於顆粒均勻分散,減少氫氣擴散距離,及陰電性碳管的催化作用有關。

    In this study, the dehydrogenation performance of the synthesized magnesium aluminum hydride (Mg(AlH4)2) was explored. Besides, the dehydrogenation temperature and the amount of H2 released of Mg(AlH4)2 were improved by incorporating additives. Mg(AlH4)2 was investigated because of its high gravimetric H2 density of 9.3 wt%, initial dehydrogenation temperature of 140–200 °C and high-purity emmsion, which made it a potential application in the mobile device or vehicle. Mg(AlH4)2 and by-product NaCl can be mechano-chemically synthesized by milling NaAlH4 and MgCl2. The microstructure of the synthesized Mg(AlH4)2 was examined using scanning electron microscope. Ex-situ X-ray and in-situ synchrotron X-ray diffraction analyses were employed to identify the crystal structure of synthesized Mg(AlH4)2 after synthesis and during dehydrogenation process, respectively. Futhermore, the corresponding dehydrogenation performance was evaluated using thermogravimetric analyzer.
    The experimental results showed that the milling time and ball-to powder weight ratio during the milling process should be properly controlled to avoid incomplete synthesis or premature dehydrogenation. Specifically, the residual NaAlH4 would be present due to the incomplete synthesis, or the dehydrogenated products would form caused by the premature dehydrogenation of the synthesized Mg(AlH4)2 for the prolonged milling time. After 0.5–2 h milling, the highest purity of the synthesized Mg(AlH4)2 experienced a two-step dehydrogenation including Mg(AlH4)2 → β-MgH2 + 2 Al + 3 H2 from 170 °C and β-MgH2 + 2 Al → 0.5 Mg2Al3 + 0.5 Al(Mg) + H2 from 305 °C, respectively. The largest amount of H2 released was 2.75 wt%. The initial dehydrogenation temperature was lowered by metathesizing NaAlH4 into Mg(AlH4)2, namely from 210 °C to 170 °C.
    To explore the synergistic effect of NaAlH4 on the dehydrogenation behavior of Mg(AlH4)2, the various mole ratio of NaAlH4–Mg(AlH4)2 mixtures were also fabricated by MCAS. The results showed that NaAlH4 not only facilitates the first step dehydrogenation of Mg(AlH4)2 in lowering its initial dehydrogenation temperature but also increases the total amount of H2 released. Besides, MgH2 and/or Al phases, the products of the first step dehydrogenation reaction, play a catalytic role in lowering the initial dehydrogenation temperature of NaAlH4. The synthesized NaAlH4–Mg(AlH4)2 mixture has an initial dehydrogenation temperature as low as 125 °C, and is able to release 3.55 wt% H2 below 350 °C. The formation of NaMgH3 suggests the changed reaction pathways. The self-catalytic dehydrogenation behavior of the NaAlH4–Mg(AlH4)2 mixture was elaborated in this study with the aid of in-situ synchrotron XRD.
    Multi-walled carbon nanotubes (MWCNTs) were also admixed into the 0.5 h-synthesized Mg(AlH4)2 by mechanical milling, and the effects on dehydrogenation properties were also explored. The addition of 5 wt% MWCNTs demonstrated a significant reduction of the initial dehydrogenation temperature from 170 °C to 70 °C. However, with an increasing addition of MWCNTs into the synthesized Mg(AlH4)2, the hydrogen desorption capacity diminished due to the partial hydrogen release induced by the catalytic decomposition during mechanical milling. The well-dispersed hydride particles, shortened hydrogen gas diffusion path, and electronegative characteristic of carbon nanotubes by adding MWCNTs are responsible for the lowered dehydrogenation temperature of Mg(AlH4)2.

    摘要...I Abstract...III 誌謝...VI 總目錄...VIII 表目錄...XII 圖目錄...XIII 第一章 前言...1 第二章 理論基礎與文獻探討...5 2-1 氫能技術發展背景...5 2-2 氫儲存法...7 2-3 金屬氫化物的吸放氫機制...9 2-4 複合金屬氫化物...12 2-4-1 鋁氫化鈉...14 2-4-2 鋁氫化鎂...16 2-5 複合金屬氫化物之製作方式...20 2-6 複合金屬氫化物之材料改質...20 2-6-1 奈米化對複合金屬氫化物吸放氫性能的影響..21 2-6-2 添加觸媒、合金化與表面改質對複合金屬氫化物吸放氫性質的影響...22 第三章 實驗方法...43 3-1 機械化學合成法 (MCAS) 製備鋁氫化鎂...43 3-2 球磨法混合鋁氫化鎂與多壁奈米碳管...44 3-3 材料特性與熱釋氫性質分析...44 3-3-1 材料微結構觀察...44 3-3-2 材料結晶結構分析...45 3-3-3 臨場 (In-situ) 同步X光繞射分析...45 3-3-4 熱差分析...46 3-3-5 熱重分析...46 第四章 結果與討論...49 4-1 鋁氫化鈉 (NaAlH4) 釋氫性質分析...49 4-1-1 原材與經球磨處理之鋁氫化鈉的粉體形貌觀察...49 4-1-2 原材與經球磨處理之鋁氫化鈉的結晶結構...49 4-1-3 原材與經球磨處理之鋁氫化鈉的熱分解釋氫性質...49 4-1-4 原材鋁氫化鈉於釋氫過程中的臨場相變分析...50 4-1-5 結語...51 4-2 鋁氫化鎂 (Mg(AlH4)2) 製備及其釋氫性質分析...58 4-2-1 球磨能量 (球磨時間、球粉重量比) 對製備之鋁氫化鎂結晶結構的影響...58 4-2-2 球磨時間對合成之鋁氫化鎂粉體形貌的影響...60 4-2-3 球磨時間與球粉比對合成之鋁氫化鎂熱分解釋氫性質的影響...61 4-2-4 合成之鋁氫化鎂經熱分解釋氫反應後的結晶結構...64 4-2-5 合成之鋁氫化鎂於釋氫過程中的臨場相變分析...64 4-2-6 結語 67 4-3 機械化學合成法製備鋁氫化鈉和鋁氫化鎂混合材料...81 4-3-1 合成不同莫耳比之鋁氫化鈉和鋁氫化鎂混合材料的結晶結構...81 4-3-2 鋁氫化鈉和鋁氫化鎂混合材料的粉體形貌觀察...82 4-3-3 鋁氫化鈉和鋁氫化鎂混合材料的熱分解釋氫性質...82 4-3-4 混合之鋁氫化鈉和鋁氫化鎂於釋氫過程中的臨場相變分析...84 4-3-5 混合之鋁氫化鈉和鋁氫化鎂的可逆吸放氫性質...89 4-3-6 結語...92 4-4 摻雜多壁奈米碳管於合成之鋁氫化鎂...113 4-4-1 混合之多壁奈米碳管與鋁氫化鎂的粉體形貌觀察...113 4-4-2 混合之多壁奈米碳管與鋁氫化鎂的結晶結構...114 4-4-3 混合之多壁奈米碳管與鋁氫化鎂的釋氫性質分析...115 4-4-4 結語...117 第五章 結論...126 第六章 未來研究方向...129 參考文獻...131

    1. Working Group I. 2007 The physical science basis. Fourth Assessment Report of the IPCC: Climate Change 2007. Geneva, Switzerland: Intergovernmental Panel on Climate Change. See http://www.ipcc.ch/.
    2. J. A. Turner, “A realizable renewable energy future”, Science 285 (1999) 687–689.
    3. D. Hart, “Hydrogen a truly sustainable transport fuel”, Front. Ecol. Environ. 1 (2003) 138–145.
    4. S. Pacala, R. Socolow, “Stabilization wedges: Solving the climate problem for the next 50 years with current technologies”, Science 305 (2004) 968–972.
    5. J. A. Turner, “Sustainable hydrogen production”, Science 305 (2004) 972–974.
    6. G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, “The hydrogen economy”, Phys. Today 57 (2004) 39–44.
    7. N. Z. Muradov, T. N. Veziroglu, “From hydrocarbon to hydrogen – carbon to hydrogen economy”, Int. J. Hydrog. Energy 30 (2005) 225–237.
    8. B. C. R. Ewan, R. W. K. Allen, “A figure of merit assessment of the routes to hydrogen”, Int. J. Hydrog. Energy 30 (2005) 809–819.
    9. B. Johnston, M. C. Mayo, A. Khare, “Hydrogen: the energy source for the 21st century”, Technovation 25 (2005) 569–585.
    10. B. D. Solomon, A. Banerjee,“A global survey of hydrogen energy research, development and policy”, Energy Policy 34 (2006) 781–792.
    11. P. P. Edwards, V. L. Kuznetsov, W. I. F. David, “Hydrogen energy”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 365 (2007) 1043–1056.
    12. T. I. Sigfusson, “Pathways to hydrogen as an energy carrier”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 365 (2007) 1025–1042.
    13. W. McDowall, M. Eames, “Towards a sustainable hydrogen economy: A multi–criteria sustainability appraisal of competing hydrogen futures”, Int. J. Hydrog. Energy 32 (2007) 4611–4626.
    14. G. Mulder, J. Hetland, G. Lenaers, “Towards a sustainable hydrogen economy: Hydrogen pathways and infrastructure”, Int. J. Hydrog. Energy 32 (2007) 1324–1331.
    15. A. Veziroglu, R. Macario, “Fuel cell vehicles: State of the art with economic and environmental concerns”, Int. J. Hydrog. Energy 36 (2011) 25–43.
    16. A. Züttel, “Hydrogen storage methods”, Naturwissenschaften 91 (2004) 157–172.
    17. L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile appplications”, Nature 414 (2001) 353–358.
    18. A. Züttel, “Materials for hydrogen storage”, Mater. Today 6 (2003) 24–33.
    19. J. A. Ritter, A. D. Ebner, J. Wang, R. Zidan, “Implementing a hydrogen economy”, Mater. Today 6 (2003) 18–23.
    20. F. Schüth, B. Bogdanović, M. Felderhoff, “Light metal hydrides and complex hydrides for hydrogen storage”, Chem. Commun. (2004) 2249–2258.
    21. D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydrides for vehicular applications: the state of the art”, JOM 58 (2006) 26–32.
    22. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, “Complex hydrides for hydrogen storage”, Chem. Rev. 107 (2007) 4111–4132.
    23. M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, “Hydrogen storage: the remaining scientific and technological challenges”, Phys. Chem. Chem. Phys. 9 (2007) 2643–2653.
    24. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, Int. J. Hydrog. Energy 32 (2007) 1121–1140.
    25. S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, “the U.S. department of energy’s national hydrogen storage project progress towards meeting hydrogen-powered vehicle requirement”, Catal. Today 120 (2007) 246–256.
    26. B. Bogdanovic, M. Schwickardi, “Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd. 253−254 (1997) 1–9.
    27. B. Bogdanovic, M. Schwickardi, “Ti-doped NaAlH4 as a hydrogen-storage materials − preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride”, Appl. Phys. A 72 (2001) 221–223.
    28. A. Züttel, A. Remhof, A. Borgschulte, O. Friedrichs, “Hydrogen: the future energy carrier”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368 (2010) 3329–3342.
    29. J. O. M. Bockris, “Will lack of energy lead to the demise of high-technology countries in this century?”, Int. J. Hydrog. Energy 32 (2007) 153–158.
    30. A. W. C. van den Berg, C. O. Areán, “Materials for hydrogen storage: current research trends and perspectives”, Chem. Commun. (2008) 668–681.
    31. R. A. Varin, T. Czujko, Z. S. Wronski, “Nanomaterials for Solid State Hydrogen Storage”, New York, Springer Science+Business Media, 2009.
    32. US Department of Energy (2009, September), “Targets for onboard hydrogen storage systems for light-duty vehicles”, Retrieved May 10, 2012, from http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf.
    33. W. I. F. David, “Effective hydrogen storage: a strategic chemistry challenge”, Faraday Discuss. 151 (2011) 399–414.
    34. A. Züttel, P. Sudan, Ph. Mauron, T. Kiyobayasshi, Ch. Emmenegger, L. Schlapbach, “Hydrogen storage in carbon nanostructures”, Int. J. Hydrog. Energy 27 (2002) 203–212.
    35. J. L. C. Rowsell, O. M. Yaghi, “Strategies for hydrogen storage in metal-organic frameworks”, Angew. Chem.-Int. Edit. 44 (2005) 4670–4679.
    36. R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, G. Wolf, “Hydrogen storage by carbon materials”, J. Power Sources 159 (2006) 781–801.
    37. D. Zhao, D. Yuan, H. C. Zhou, “The current status of hydrogen storage in metal–organic frameworks”, Energy Environ. Sci. 1 (2008) 222–235.
    38. L. Wang, R. T. Yang, “New sorbents for hydrogen storage by hydrogen spillover–a review”, Energy Environ. Sci. 1 (2008) 268–279.
    39. L. J. Murray, M. Dincă, J. R. Long, “Hydrogen storage in metal–organic frameworks”, Chem. Soc. Rev. 38 (2009) 1294–1314.
    40. Y. Yürüm, A. Taralp, T. N. Veziroglu, “Storage of hydrogen in nanostructured carbon materials”, Int. J. Hydrog. Energy 34 (2009) 3784–3798.
    41. S. Ma, H. C. Zhou, “Gas storage in porous metal–organic frameworks for clean energy applications”, Chem. Commun. 46 (2010) 44–53.
    42. V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, “Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review”, International Journal of Energy Research 31 (2007) 637–663.
    43. G. D. Sandrock, “The Metallurgy and Production of Rechargeable Hydrides”, Hydrides for energy storage, Proceedings of the International Symposium, Geilo, Norway, Auguest 14-19, 1977.
    44. Y. Nakamori, K. Miwa, A. Ninomiya, H. W. Li, N. Ohba, S. Towata, A. Züttel, S. Orimo, “Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativities: First-principles calculations and experiments”, Phys. Rev. B 74 (2006) 045126.
    45. Y. Nakamori, H. W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata, S. Orimo, “Thermodynamical stabilities of metal-borohydrides”, J. Alloys Compd. 446–447 (2007) 296–300.
    46. Y. Nakamori, H. W. Li, M. Matsuo, K. Miwa, S. Towata, S. Orimo, “Development of metal borohydrides for hydrogen storage”, J. Phys. Chem. Solids 69 (2008) 2292–2296.
    47. B. Bogdanović, G. Sandrock, “Catalyzed complex metal hydrides”, MRS Bull. 27 (2002) 712–716.
    48. A. M. Seayad, D. M. Antonelli, “Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials”, Adv. Mater. 16 (2004) 765–777.
    49. M. Fitchtner, “Nanotechnological aspects in materials for hydrogen storage”, Adv. Eng. Mater. 7 (2005) 443–455.
    50. B. Bogdanović, U. Eberle, M. Felderhoff, F. Schüth, “Complex aluminum hydrides”, Scripta Mater. 56 (2007) 813–816.
    51. P. Chen, M. Zhu, “Recent progress in hydrogen storage”, Mater. Today 11 (2008) 36–43.
    52. U. Eberle, M. Felderhoff, F. Schüth, “Chemical and physical solutions for hydrogen storage”, Angew. Chem.-Int. Edit. 48 (2009) 6608–6630.
    53. T. K. Mandal, D. H. Gregory, “Hydrogen storage materials: present scenarios and future directions”, Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 105 (2009) 21–54.
    54. J. Graetz, “New approaches to hydrogen storage”, Chem. Soc. Rev. 38 (2009) 73–82.
    55. I. P. Jain, P. Jain, A. Jain, “Novel hydrogen storage materials: A review of lightweight complex hydrides”, J. Alloy. Compd. 503 (2010) 303–339.
    56. P. Jena, “Materials for hydrogen storage: past, present, and future”, J. Phys. Chem. Lett. 2 (2011) 206–211.
    57. K. J. Gross, S. Guthrie, S. Takara, G. Thomas, “In-situ X-ray diffraction study of the decomposition of NaAlH4”, J. Alloys Compd. 297 (2000) 270–281.
    58. A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J. Alloys Compd. 419 (2006) 40–44.
    59. P. Claudy, B. Bonnetot, G. Chahine, J. M. Letoffe, “Etude du comportement thermique du tetrahydroaluminate de sodium NaAlH4 et de l’hexahydroaluminate de sodium Na3AlH6 de 298 a 600K”, Thermochem. Acta 38 (1980) 75–88.
    60. J. A. Dilts, E. C. Ashby, “A study of the thermal decomposition of complex metal hydrides”, Inorg. Chem. 11 (1972) 1230–1236.
    61. A. Zaluska, L. Zaluski, J. O. Ström-Olsen, R. Schulz, US Patent Application No. US08-645 352.
    62. K. J. Gross, G. J. Thomas, C. M. Jensen, “Catalyzed alanates for hydrogen storage”, J. Alloys Compd. 330–332 (2002) 683–690.
    63. B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, J. Tölle “Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials”, J. Alloys Compd. 302 (2000) 36–58.
    64. G. Sandrock, K. J. Gross, G. J. Thomas, “Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates”, J. Alloys Compd. 339 (2002) 299–308.
    65. G. J. Thomas, K. J. Gross, N. Y. C. Yang, C. Jensen, “Microstructural characterization of catalyzed NaAlH4”, J. Alloys Compd. 330−332 (2002) 702–707.
    66. B. Bogdanović, M. Felderhoff, S. Kasdel, A. Pommerin, K. Sclichte, F. Schüth, “Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents”, Adv. Mater. 15 (2003) 1012–1015.
    67. M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, “Small Ti clusters for catalysis of hydrogen exchange in NaAlH4”, Nanotechnology 14 (2003) 778–785.
    68. E. Wiberg, R. Bauer, “Zur Kenntnis eines Magnesiumwasserstoffs MgH2”, Z. Naturforsch. 5b (1950) 396–397.
    69. T. N. Dymova, N. N. Mal’tseva, V. N. Konoplev, A. I. Golovanova, D. P. Alexandrov, A. S. Sizareva, “Solid-phase solvate-free formation of magnesium hydroaluminates Mg(AlH4)2 and MgAlH5 upon mechanochemical activation or heating of magnesium hydride and aluminum chloride mixtures”, Russ. J. Coord. Chem. 29 (2003) 385–389.
    70. T. N. Dymova, V. N. Konoplev, A. S. Sizareva, D. P. Alexandrov, “Magnesium tetrahydroaluminate: solid-phase formation with mechanochemical activation of a mixture of aluminum and magnesium hydrides”, Russ. J. Coord. Chem. 25 (1999) 312–315.
    71. M. Fichtner, O. Fuhr, “Synthesis and structures of magnesium alanate and two solvent adducts”, J. Alloys Compd. 345 (2002) 286–296.
    72. M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate–a material for reversible hydrogen storage?”, J. Alloys Compd. 356–357 (2003) 418–422.
    73. K. Komiya, N. Morisaku, Y. Shinzato, K. Ikeda, S. Orimo, Y. Ohki, K. Tatsumi, H. Yukawa, M. Morinaga, “Synthesis and dehydrogenation of M(AlH4)2 (M=Mg, Ca)”, J. Alloys Compd. 446–447 (2007) 237–241.
    74. M. Mamatha, C. Weidenthaler, A. Pommerin, M. Felderhoff, F. Schüth, “Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods”, J. Alloys Compd. 416 (2006) 303–314.
    75. M. Mamatha, B. Bogdanović, M. Felderhoff, A. Pommerin, W. Schmidt, F. Schüth, C. Weidenthaler, “Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates”, J. Alloys Compd. 407 (2006) 78–86.
    76. R. A. Varin, Ch. Chiu, T. Czujko, Z. Wronski, “Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH4)2] complex hydride”, Nanotechnology 16 (2005) 2261–2274.
    77. R. A. Varin, Ch. Chiu, T. Czujko, Z. Wronski, “Mechano-chemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride [Mg(AlH4)2] and its hydrogen desorption properties”, J. Alloys Compd. 439 (2007) 302–311.
    78. Y. Kim, E. Lee, J. Shim, Y. W. Cho, K. B. Yoon, “Mechanochemical synthesis and thermal decomposition of Mg(AlH4)2”, J. Alloys Compd. 422 (2006) 283–287.
    79. P. Claudy, B. Bonnetot, J. M. Letoffe, “Preparation et proprietes physico-chimiques de l’alanate de magnesium Mg(AlH4)2”, J. Therm. Anal. 15 (1979) 119–128.
    80. J. S. Benjamin, “Mechanical alloying”, Scientific American 234 (1976) 40–48.
    81. N. Cui, B. Luan, H. K. Liu, H. J. Zhao, S. X. Dou, “Characteristics of magnesium-based hydrogen-storage alloy electrodes”, J. Power Sources 55 (1995) 263–267.
    82. N. Cui, J. L. Luo, K. T. Chuang, “Study of hydrogen diffusion in α- and β-phase hydrides of Mg2Ni alloy by microelectrode technique”, J. Electroanal. Chem. 503 (2001) 92–98.
    83. Z. Ye, L. C. Erickson, B. Hjörvarsson, “Hydride formation in Mg-ZrFel.4Cr0.6 composite material”, J. Alloy. Compd. 209 (1994) 117–124.
    84. Y. Asakuma, S. Miyauchi, T. Yamamoto, H. Aoki, T. Miura, “Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method”, Int. J. Hydrog. Energy 28 (2003) 529–536.
    85. L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, R. Schulz, “Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi”, J. Alloys Compd. 217 (1995) 295–300.
    86. P. C. H. Mitchell, A. J. Ramirez-Cuesta, S. F. Parker, J. Tomkinson, D. Thompsett, “Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. surface vibrational states and hydrogen riding modes”, J. Phy. Chem. B 107 (2003) 6838−6845.
    87. L. Zaluski, A. Zaluska, P. Tessier, J. O. Strom-Olsen, R. Schulz, “Nanocrystalline hydrogen absorbing alloys”, Mater. Sci. Forum 225−227 (1996) 853−858.
    88. R. G. Gao, J. P. Tu, X. L. Wang, X. B. Zhang, C. P. Chen, “The absorption and desorption properties of nanocrystalline Mg2Ni0.75Cr0.25 alloy containing TiO2 nanoparticles”, J. Alloy. Compd. 356−357 (2003) 649−653.
    89. A. Zaluska, L. Zaluski, J. O. Strom-Olsen, “Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage”, Appl. Phys. A 72 (2001) 157−165.
    90. J. L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, D. Radev, P. Peshev, “Hydrogen sorption properties of the nanocomposites Mg–Mg2Ni1-xFex”, J. Alloy. Compd. 345 (2002) 280−285.
    91. M. S. L. Hudson, D. Pukazhselvan, G. I. Sheeja, O.N. Srivastava, “Studies on synthesis and dehydrogenation behavior of magnesium alanate and magnesium-sodium alanate mixture”, Int. J. Hydrog. Energy 32 (2007) 4933–4938.
    92. J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith, G. L. Olson, “Thermodynamic destabilization and reaction kinetics in light metal hydride systems”, J. Alloys Compd. 446–447 (2007) 409–414.
    93. P. J. Wang, Z. Z. Fang, L. P. Ma, X. D. Kang, P. Wang, “Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite”, Int. J. Hydrog. Energy 33 (2008) 5611–5616.
    94. T. E. C. Price, D. M. Grant, V. Legrand, G. S. Walker, “Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system–The effects of stoichiometry and decomposition environment on cycling behavior”, Int. J. Hydrog. Energy 35 (2010) 4154–4161.
    95. Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, K. Miwa, Y. Kojima, S. Orimo, “Dehydriding reactions of mixed complex hydrides”, J. Power Sources 155 (2006) 447–455.
    96. D. Pukazhelvan, O.N. Srivastava, “Investigations on hydrogen storage behavior of CNT doped NaAlH4”, J Alloys Compd. 403 (2005) 312–317.
    97. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4”, Nano Letters 9 (2009) 1501–1505.
    98. C. Wu, H. M. Cheng, “Effects of carbon on hydrogen storage performances of hydrides”, J. Mater. Chem. 20 (2010) 5390–5400.
    99. Y. F. Khalil, S. M. Opalka, B. L. Laube, “Experimental and theoretical investigations for mitigating NaAlH4 reactivity risks during postulated accident scenarios involving exposure to air or water”, Process Saf. Environ. Protect. In press.
    100. B. Vigeholm, J. Kjøller, B. Larsen, A. S. Pedersen, “Formation and decomposition of magnesium hydride”, J. Less-Comm. Metals 89 (1983) 135–144.
    101. M. Ismail, Y. Zhao, X. B. Yu, J. F. Mao, S. X. Dou, “The hydrogen storage properties and reaction mechanism of the MgH2–NaAlH4 composite system”, Int. J. Hydrog. Energy 36 (2011) 9045–9050.
    102. P. A. Berseth, J. Pittman, K. Shanahan, A. C. Stowe, D. Anton, R. Zidan, “High temperature–pressure processing of mixed alanate compoounds”, J. Phys. Chem. Solids 69 (2008) 2141–2145.

    下載圖示 校內:2014-07-26公開
    校外:2014-07-26公開
    QR CODE