研究生: |
劉庭宇 Liu, Ting-yu |
---|---|
論文名稱: |
研發含有奈米結構之微流道及兩相流現象研究 Fabrication and Development of Nanostructure Based Micro-channel and the case for study of two-phase flow phenomena. |
指導教授: |
高騏
Gau, Chie |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 奈米結構 、兩相流 、微流道 |
外文關鍵詞: | nanostructure, two phase flow, microchannel |
相關次數: | 點閱:61 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主要目標在於研發一套建構在Pyrex 7740玻璃與矽基板陽極接合之微流道系統,其中利用微機電機械系統(MEMS)與奈米成長技術(Nanotechnology)將奈米結構整合於微流道中。另外藉由氣化的方式將疏水性(Hydrophobic)-過氟庚基三氯矽烷材料沈積於微流道底部來進行表面改質。實驗將溫度感測器(thermocouple)沿著工作流體流動之方向以等間距地埋設在微流道壁面,每個感測器間距6 mm,可詳細的量測微流道底部的局部壁面溫度,並進行研究不同熱通量條件與不同流量條件下的壁面溫度分佈現象,同時藉由影像拍攝微流道中於不同表面性質下之流譜加以比較。
在製程方面,以分段式乾式蝕刻的方式成功製作出長為30mm、寬為1000μm、高為103~105μm,水力直徑Dh=186.76μm之微流道晶片並利用VLS法成功的將奈米結構成長於微流道內。陽極接合方面在含有奈米結構之微流道晶片與Pyrex 7740玻璃接合的過程中,用以提高操作溫度、電壓、接合時間可減少接合失敗率。
The goal of this study is to develop a micro-channel system which anodic bonding Pyrex 7740glass and silicon substrate, and integrate MEMS with Nanotechnology to micro-channel system. Moreover, the Hydrophobic material was deposited at the bottom of the micro-channel by gasification to improve the surface. In the experiment, the thermocouple was equidistance-embed at the bottom of the silicon, which is 6mm of each space in the micro-channel wall along the direction of the working flow, in order to measure the local temperature at the bottom of the wall of the micro-channel in detail and to study the distribution phenomenon of wall temperature in different heat flux and mass flux condition; meanwhile by recording the flow patterns of different surfaces in the micro-channel wall under boiling condition were visualized using a CCD system and analyzed.
In the processes of fabrication, the rectangular micro-channel in the (100) silicon wafer were fabricated by the Inductive Couple Plasma Etcher system. These micro-channel, a length of 30mm, a width of 1000μm and depth of 103~105μm, had on identical rectangular cross-section with a hydraulic diameter of 186.76μm and successfully use nanostructures with the VLS method grow silicon nanowire in micro-channel. In the processes with nanostructures based micro-channel of anodic bonding experiment shows that increase the operation temperature, voltage, and bonding time can reduce the failure.
【1】 D.B. Tuckerman, R. F. W. Pease, “High Performance heat sinking for VLSI, IEEE Electronic Device letters”, Vol. EDL- 2, No.5 pp.126-129, 1981.
【2】 X. F. Peng, H. Y. Hu, B. X. Wang, “Boiling Nucleation during Liquid Flow in Microchannels”, Int. J. Heat and Mass Transfer, Vol.41, No.1, pp.101-106, 1998.
【3】 X. F. Peng, H. Y. Hu, B. X. Wang, “Flow Boiling through V-Shape Microchannels”, Experimental Heat Transfer, Vol.11,No.1, pp.87-90, 1998.
【4】 X. F. Peng, B. X. Wang, “Boiling Characteristics in Microchannels/Microstructures”, The 11th Int. Symposium on Transport Phenomena, ISTP-11, No.78, pp 485-491, 1998.
【5】 L.Zhang, Wong Man and Zohar Yitshak,”Phase Change in Microchannel Heat Sink Under Forced Convection Boiling”,IEEE,pp.180-225,2000.
【6】 L.Zhang, Evelyn N.Wang,J-M.Koo,L.Jiang,K.E.Goodson,J.G.Santiago,and T.W.Kenny,”Enhanced Nucleate Boiling in Microchannels”IEEE,pp.581-589,2002.
【7】 H. Y. Wu, Ping Cheng, “Visualization and Measurements of Periodic Boiling in Silicon Microchannels”, International Journal of Heat and Mass Transfer ,Vol.46, pp.2603-2614, 2003.
【8】 H. Y. Wu, Ping Cheng, ”Liquid/Two-Phase/Vapor Alternating Flow During Boiling in Microchannels at High Heat Flux”, Int. Comm. Heat Mass Transfer, Vol.30, No.3, pp.295-302, 2003.
【9】 S.G. Kandlikar,”Nucleation characteristics and stability considerations during flow boiling in microchannels”, Experimental Thermal and Fluid Science, Vol.30, pp.441-447, 2006.
【10】 M.E. Stinke, S.G. Kandlikar, “Flow boiling and pressure drop in parallel flow microchannels”, First Intternational Conference on Microchannels and Minichannels, Rochester, New York, USA, April 24-25, pp.567-579,2003.
【11】 Kosar, A., Kuo, C.J., and Peles, Y., “Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities,” International Journal of Heat and Mass Transfer, Vol. 48, No. 23-24, pp.4867-4886, 2005.
【12】 Jones, R., Pate, D., and Bhavnani, S., “Phase Change Thermal Transport in Etched Silicon Microchannel Heat Sinks,” 13th International Heat Transfer Conference, No. MPH-28, 2006.
【13】 R. S. Wagner, W. C. Ellis, Appl. Phys. Lett, “Vapor-Liquid-Solid mechanism of single crystal growth”,Vol.4, No.89, 1964.
【14】 B. Kalache, P. R. I Cabarrocas, and A. F. I Morral, “Observation of incubation times in the nucleation of silicon nanowires obtained by the Vapor-Liquid-Solid method”,Japan Jour Appl. Phys.Vol.45, No.190, 2006.
【15】 O. G. Shpyrko,R. Streitel,V. S. K. Balagurusamy,A.lexei Y. Grigoriev, M. Deutsch, B. M. Ocko, M.Meron,B. Lin, P. S. Pershan , “Surface crystallization in a liquid AuSi alloy.”,Science, Vol.313, No.77, 2006.
【16】 S. Kodambaka, J. B. Hannon, R. M. Tromp, and F. M. Ross, “Control of Si nanowire growth by oxygen.”,Nano Lett, Vol.6, No.1292,2006.
【17】 J. B. Hanon, S. Kodambaka, F. M. Ross, and R. M. Tromp, “The influence of the surface migration of gold on the growth of silicon nanowires.”,Nature, Vol.440, No.69, 2006.
【18】 C. Wagner, Zeit. Fur Elektrochem, “Theorie der altering von niederschlagen durch umlosen.”,Vol.65, No.581, 1961.
【19】 I.M Lifschitz, and Slyozov, ”The kinetics of precipitation from supersaturated solid solutions.”, J. Phys. Chem. Solids, Vol.19, No.35, 1961.
【20】 Wang,G.D,Cheng,P.,and Wu,H.Y.,“Unstable and Stable FlowBoiling in Parallel Microchannels and in a Single Microchannel,” Int. J. HeatMass Transfer, Vol.50, pp. 4297-4310, 2007.
【21】 Wang,G.D.,Cheng,P.,and Bergles,A.E.,“Effects of Inlet/OutletConigurations on Flow Boiling Instability in Parallel Microchannels,” Int. J.Heat Mass Transfer,Vol.51, pp. 2267-2281,2008.
【22】 黃琪齡,「矽奈米線在矽表面的生長」,碩士論文,2007.
【23】 陳弘達,「以微機電技術製作含有溫度感測器之微流道系統及兩相流熱傳研究」,碩士論文,2005.
【24】 黃青峯,「微渠道之微加熱器及溫度感測器設計製作」,碩士論文,2004.
【25】 陳昭宇,「漸擴與等截面積矩形微流道之沸騰熱傳研究」,碩士論文,2007
【26】 莊達人,『VLSI製造技術』,高立圖書