| 研究生: |
李典恆 Li, Tien-Heng |
|---|---|
| 論文名稱: |
陳-西蒙斯量子重力態之研究 Study of Chern-Simons quantum gravitational state |
| 指導教授: |
許祖斌
Soo, Cho-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 內蘊時間重力 、陳-西蒙斯態 、相關函數 、功率譜 |
| 外文關鍵詞: | Intrinsic Time Gravity, Chern-Simons State, Correlation Functions, Power Spectrum |
| 相關次數: | 點閱:56 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文於內蘊時間重力架構下探討重力陳-西蒙斯態。內蘊時間重力引入在早期宇宙主導哈密頓量的Cotton-York項,因此陳-西蒙斯泛函的指數成為了宇宙初始態與量子起源的優良候選者。而態的泛數正好是具有陳-西蒙斯作用量的配分函數,並且算符對態的期望值即為多點相關函數。常用於研究微擾的功率譜本質上為漲落的兩點相關函數。在此論文中,陳-西蒙斯態內橫向無跡度規漲落的兩點和三點相關函數都已被計算。我們證明了具有尺度不變性的兩點函數是此理論在Cotton-York主導時代的特性,並且在文中也與同樣具有尺度不變功率譜慢滾暴脹理論進行比較。
This work investigates the gravitational Chern-Simons state in Intrinsic Time Gravity.
The framework allows the introduction of a Cotton-York term which dominates the Hamiltonian in the early universe. Consequently the exponential of the Chern-Simons functional becomes a preeminent candidate for the initial state and quantum origin of the universe. The norm of the state is just the partition function with Chern-Simons action; and expectation values of operators with respect to this state become multi-point correlation functions which can be explicitly evaluated.
The power spectrum is essentially the Fourier transform of the two-point correlation function of the fluctuations which is used to study the perturbations. Both two- and three-point correlation functions of transverse-traceless metric fluctuations in the Chern-Simons state are explicitly computed. We demonstrate that to good approximation scale-invariant two-point function is one of the defining signatures of the theory in the Cotton-York dominated era; and we compare with the simple scalar field inflationary scenario which also has approximately scale-invariant power spectrum in the slow-roll stage.
[1] C. Soo and H. L. Yu, General Relativity without paradigm of space-time covariance, and resolution of the Problem of Time, Prog. Theor. Exp. Phys. 2014, 013E01 (2014);
N. O’ Murchada, C. Soo and H. L. Yu, Intrinsic Time Gravity and the Lichnerowicz-York Equation, Class. Quantum Grav. 30, 095016 (2013);
E. Ita, C. Soo and H. L. Yu, Intrinsic Time Quantum Geometrodynamics, Prog. Theor. Exp. Phys. 2015, 083E01 (2015);
C. Soo, H.L. Yu, New Commutation Relations for Quantum Gravity, Chin. J. Phys. 53, 110102-1 (2015);
C. Soo, Quantum geometrodynamics with intrinsic time development, Int. J. Mod. Phys. D25, 1645008 (2016);
E. Ita, C. Soo and H. L. Yu, Cosmic time and reduced phase space of General Relativity, Phys. Rev. D97, 104021 (2018);
E. Ita, C. Soo and H. L. Yu, Gravitational waves in Intrinsic Time Geometrodynamics, Eur. Phys. J. C 78, 723 (2018);
E. Ita, C. Soo and H. L. Yu, Intrinsic time gravity, heat kernel regularization, and emergence of Einstein’s theory, Class. Quantum Grav. 38, 035007 (2021);
Intrinsic Time Geometrodynamics: At One With The Universe, Chopin Soo and Hoi Lai Yu (World Scientific, 2022), to appear.
[2] J.R. Klauder, Overview of Affine Quantum Gravity, Int. J. Geom. Methods Mod. Phys. 3, 81 (2006).
[3] L. Lindblom, N.W. Taylor, F. Zhang, Scalar, vector and tensor harmonics on the threesphere, Gen. Relativ. Gravit. 49, 139 (2017).
[4] Peter Coles, Francesco Lucchin, Cosmology: The Origin and Evolution of Cosmic Structure Second Edition, (John Wiley & Sons Inc, 2002).
[5] See, for instance, M. P. Hobson, P. Efstathiou and A. N. Lasenby, General Relativity: An Introduction for Physicists, (Cambridge University Press, 2006), and references therein.
[6] Wei Chen, Gordon W. Semenoff and Yong-Shi Wu, Two-loop analysis of non-Abelian Chern-Simons theory, Phys. Rev. D 46, 5521 (1992).