| 研究生: |
李冠慧 Li, Guan-Hui |
|---|---|
| 論文名稱: |
地震超材料設計之減震模擬及效益評估 Design and analysis of seismic metamaterials: An assessment of energy dissipation effect |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 地震超材料 、等效介質理論 、減震效益 、彈性波司乃耳定律 |
| 外文關鍵詞: | seismic metamaterials, effective medium theory, energy dissipation effect |
| 相關次數: | 點閱:236 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年抗震領域興起了一項新穎的減震理論—地震超材料,其透過於震波
頻率下激發單元結構的局部共振,使地震能量衰減於傳播路徑之中,而本論文的目標為量化地震超材料的減震效益,首先從等效介質理論出發探討超材料的消能機制並設計單元結構,接著藉由彈性波司乃耳定律求得理論上超材料等效介質的消能效果,並與有限元素軟體所建立的實尺超材料模型之頻域模擬結果相互比較,然而地震波有著與時間相依的特性,因此本論文亦討論超材料於時間域上的消能情形,並在最後提出評估大域空間下地震超材料減震效益的模擬方向。
Inspired by recent demonstrations of wave manipulation with seismic metamaterials, we propose the concept of quantifying the energy dissipation effect. Firstly, we briefly introduce the energy dissipation mechanism of metamaterials and design the unit cell based on the effective medium theory. Secondly, the energy dissipation effect is analytically derived based on Snell's law. Considering the real-scale energy dissipation reaction, the model in frequency domain and in time domain are established by the finite element program. Lastly, we propose a method of evaluating the energy dissipation effect in a large-scale spatial configuration.
Achaoui, Y., Antonakakis, T., Brule, S., Craster, R., Enoch, S. and Guenneau, S., Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19, 063022 (2017).
Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S., Seismic waves damping with arrays of inertial resonators, Extreme Mechanics Letters 8, 30-37 (2016).
Achenbach, J., Wave Propagation in Elastic Solids, (Elsevier, 1973).
Assouar, B., Liang, B., Wu, Y., Li, Y., Cheng, J.-C. and Jing, Y., Acoustic metasurfaces, Nature Reviews Materials 1, 460-472 (2018).
Brûlé, S., Javelaud, E., Enoch, S. and Guenneau, S., Experiments on seismic metamaterials: molding surface waves, Physical Review Letters 112, 133901 (2014).
Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S., Flat lens effect on seismic waves propagation in the subsoil, Scientific Reports 7, 18066 (2017).
Braile, L., Seismic wave demonstrations and animations, Purdue University 1-15 (2010).
Cacciola, P. and Tombari, A., Vibrating barrier: a novel device for the passive control of structures under ground motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, 20150075 (2015).
Chen, H. and Chan, C., Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters 91, 183518 (2007).
Colquitt, D., Colombi, A., Craster, R., Roux, P. and Guenneau, S., Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction, Journal of the Mechanics and Physics of Solids 99, 379-393 (2017).
Colombi, A., Roux, P., Guenneau, S., Gueguen P. and Craster, R., Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Scientific Reports 6, 19238 (2016).
Diatta, A., Achaoui, Y., Brûlé, S., Enoch, S. and Guenneau, S., Control of Rayleigh-like waves in thick plate Willis metamaterials, AIP Advances 6, 121707 (2016).
Du, Q., Zeng, Y., Huang, G. and Yang, H., Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7, 075015 (2017).
Du, Q., Zeng, Y., Xu, Y., Yang, H. and Zeng, Z., H-fractal seismic metamaterial with broadband low-frequency bandgaps, Journal of Physics D: Applied Physics 51, 105104 (2018).
Fang, N., Lee, H., Sun, C. and Zhang, X., Sub–diffraction-limited optical imaging with a silver superlens, Science 308, 534-537 (2005).
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452 (2006).
Finocchio, G., Casablanca, O., Ricciardi, G., Alibrandi, U., Garescì, F., Chiappini, M. and Azzerboni, B., Seismic metamaterials based on isochronous mechanical oscillators, Applied Physics Letters 104, 191903 (2014).
Graff, K. F., Wave Motion in Elastic Solids, (Ohio State University Press, 1975).
Gusev, V. E. and Wright, O. B., Double-negative flexural acoustic metamaterial, New Journal of Physics 16, 123053 (2014).
Haberman, M. R. and Guild, M. D., Acoustic metamaterials, Phys. Today 69, 42-48 (2016).
Hill, R., Elastic properties of reinforced solids: some theoretical principles, Journal of the Mechanics and Physics of Solids 11, 357-372 (1963).
Huang, G. and Sun, C., Band gaps in a multiresonator acoustic metamaterial, Journal of Vibration and Acoustics 132, 031003 (2010).
Huang, H.-H. and Sun, C.-T., Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus, The Journal of the Acoustical Society of America 132, 2887-2895 (2012).
Huang, H. and Sun, C., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11, 013003 (2009).
Huang, H. and Sun, C., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine 91, 981-996 (2011).
John, S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58, 2486 (1987).
Kadic, M., Bückmann, T., Schittny, R. and Wegener, M., Metamaterials beyond electromagnetism, Reports on Progress in Physics 76, 126501 (2013).
Kanamori, H., The energy release in great earthquakes, Journal of Geophysical
Research 82, 2981-2987 (1977).
Kildishev, A. V., Boltasseva, A., Shalaev, V. M., Planar Photonics with Metasurfaces, Science 339, 1232009 (2013).
Kim, S.-H. and Das, M. P., Seismic waveguide of metamaterials, Modern Physics Letters B 26, 1250105 (2012).
Kim, S.-H. and Das, M. P., Seismic negative belt of acoustic metamaterials, arXiv preprint arXiv:1710.11273 (2017).
Krödel, S., Thomé, N. and Daraio, C., Wide band-gap seismic metastructures, Extreme Mechanics Letters 4, 111-117 (2015).
Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Physical Review Letters 71, 2022 (1993).
Lai, Y., Wu, Y., Sheng, P. and Zhang, Z.-Q., Hybrid elastic solids, Nature Materials 10, 620 (2011).
Lee, S.-J., Rupture process of the 2011 Tohoku-Oki earthquake based upon joint source inversion of teleseismic and GPS data, TAO: Terrestrial, Atmospheric and Oceanic Sciences 23, 1 (2012).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. and Kim, C. K., Composite acoustic medium with simultaneously negative density and modulus, Physical Review Letters 104, 054301 (2010).
Liao, S. and Sangrey, DA., Use of piles as isolation barriers, Journal of the Geotechnical Engineering Division 104, 1139-1152, 1978.
Liu, X.-N., Hu, G.-K., Huang, G.-L. and Sun, C.-T., An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters 98, 251907 (2011).
Liu, X., Shi, Z. and Mo, Y., Comparison of 2D and 3D models for numerical simulation of vibration reduction by periodic pile barriers, Soil Dynamics and Earthquake Engineering 79, 104-107 (2015).
Liu, Y., Shen, X., Su, X. and Sun, C., Elastic metamaterials with low-frequency passbands based on lattice system with on-site potential, Journal of Vibration and Acoustics 138, 021011 (2016).
Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289, 1734-1736 (2000).
Ma, G. and Sheng, P., Acoustic metamaterials: From local resonances to broad horizons, Science Advances 2, e1501595 (2016).
Maldovan, M., Sound and heat revolutions in phononics, Nature 503, 209 (2013).
Manger, G. E., Porosity and Bulk Density of Sedimentary Rocks, (United States Geological Survey, 1963).
Martin, B., 'Invisibility cloaks' for buildings could protect them from earthquakes, https://phys.org/news/2016-11-invisibility-cloaks-earthquakes.html (2016).
Maurel, A., Marigo, J.-J., Pham, K. and Guenneau, S., Conversion of Love waves in a forest of trees, Physical Review B 98, 134311 (2018).
Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8, 248 (2006).
Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18, 083041 (2016).
Norris, A. N., Acoustic cloaking, Acoust. Today 11, 38-46 (2015).
Ouchi, T., Lin, A., Chen, A. and Maruyam, T., The 1999 Chi-Chi (Taiwan) earthquake: earthquake fault and strong motions, Bulletin of the Seismological Society of America 91, 966-976 (2001).
Palermo, A., Krödel, S., Marzani, A. and Daraio, C., Engineered metabarrier as shield from seismic surface waves, Scientific Reports 6, 39356 (2016).
Palermo, A. and Marzani, A., Control of Love waves by resonant metasurfaces, Scientific Reports 8, 7234 (2018).
Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85, 3966 (2000).
Pendry, J. B., Holden, A., Stewart, W. and Youngs, I., Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76, 4773 (1996).
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).
Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 1780-1782 (2006).
Richart, F. E., Hall, J. R. and Woods, R. D., Vibrations of Soils and Foundations, (Englewood Cliffs, New Jersey: Prentice-Hall, 1970).
Ricker, N., The form and laws of propagation of seismic wavelets, Geophysics 18, 10-40 (1953).
Roux, P., Bindi, D., Boxberger, T., Colombi, A., Cotton, F., Douste‐Bacque, I., Garambois, S., Gueguen, P., Hillers, G. and Hollis, D., Toward seismic metamaterials: The METAFORET project, Seismological Research Letters 89, 582-593 (2018).
Seed, H. B., Ugas, C. and Lysmer, J., Site-dependent spectra for earthquake-resistant design, Bulletin of the Seismological Society of America 66, 221-243 (1976).
Shearer, P. M., Introduction to Seismology, (Cambridge University Press, 1999).
Shelby, R. A., Smith, D. R. and Schultz, S., Experimental verification of a negative index of refraction, Science 292, 77-79 (2001).
Sheng, P., Introduction to Wave Scattering, (Localization and Mesoscopic Phenomena, 2006).
Sheng, P., Mei, J., Liu, Z. and Wen, W., Dynamic mass density and acoustic metamaterials, Physica B: Condensed Matter 394, 256-261 (2007).
Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C. and Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84, 4184 (2000).
Smith, D. R., Pendry, J. B. and Wiltshire, M. C., Metamaterials and negative refractive index, Science 305, 788-792 (2004).
Smith, D. R., Schultz, S., Markos, P. and Soukoulis, CM., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Physical Review B 65, 195104 (2002).
Stein, S. and Wysession, M., An Introduction to Seismology, Earthquakes, and Earth Structure, (John Wiley & Sons, 1991).
Towhata, I., Geotechnical Earthquake Engineering, (Springer Science & Business Media, 2008).
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. and Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376 (2008).
Veselago, V., Braginsky, L., Shklover, V. and Hafner, C., Negative refractive index materials, Journal of Computational and Theoretical Nanoscience 3, 189-218 (2006).
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Soviet Physics Uspekhi 10, 509-514 (1968).
Wang, C.-Y. and Achenbach, J., Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 449, 441-458 (1995).
Wang, C.-Y. and Achenbach, J. D., A new method to obtain 3-D Green's functions for anisotropic solids, Wave Motion 18, 273-289 (1993).
Wang, Y., Frequencies of the Ricker wavelet, Geophysics 80, A31-A37 (2015).
Weiland, T., Schuhmann, R., Greegor, R. B., Parazzoli, C. G., Vetter, A. M., Smith, D. R., Vier, D. C. and Schultz, S., Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments, Journal of Applied Physics 90, 5419 (2001).
Wu, Y., Lai, Y. and Zhang, Z.-Q., Effective medium theory for elastic metamaterials in two dimensions, Physical Review B 76, 205313 (2007).
Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58, 2059 (1987).
Yao, S., Zhou, X. and Hu, G., Experimental study on negative effective mass in a 1D mass–spring system, New Journal of Physics 10, 043020 (2008).
Yu, N. and Capasso, F., Flat optics with designer metasurfaces, Nature Materials 13, 139-150 (2014).
Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J. P., Capasso, F. and Gaburro, G., Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refractio, Science 334, 333-337 (2011).
Zigoneanu, L., Popa, B.-I. and Cummer, S. A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials 13, 352 (2014).
石志飛、程志寶、向宏軍,周期結構理論及其在隔震減震中的應用 (2017)。
內政部,建築物耐震設計規範及解說 (2011)。
岡本舜三,地震工程學,科技圖書股份有限公司 (1998)。
顏銀桐、林柏伸、邵國士、鄭錦桐、吳元傑、李憲忠,地震波模擬技術發展與應用,中興工程,13-22 (2014)。
溫國樑、林哲民、郭俊翔、黃雋彥,地震災害及成因,科學月刊 (2016)。
吳逸軒、汪向榮、張國鎮、陳東陽,多類型複合地震超結構之寬頻帶設計與分析,中國土木水利工程學刊 31,103-118 (2019)。
簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震技術—地震超材料之設計與分析,中國土木水利工程學刊,接受發表 (2019)。
鄭世楠、王子賓、林祖慰、江嘉豪,台灣地區地震目錄的建置(II),中央氣象局地震測報中心技術報告,57-483 (2010)。
國家地震工程研究中心,九二一集集大地震全面勘災精簡報告 (1999)。
顏銘萱,1935年新竹-臺中烈震之震源破裂特性分析與三維地震波模擬,中央大學地球科學學系碩士論文 (2016)。
吳逸軒,寬頻帶地震超材料設計與模擬,成功大學土木工程學系碩士論文 (2018)。