| 研究生: |
王翰弘 Wang, Han-Hong |
|---|---|
| 論文名稱: |
以電子繞射量測殘留應變與其應用 Residual Strain Measurement by using Electron Diffraction and It’s Application |
| 指導教授: |
郭瑞昭
Kuo, J.C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 電子背向散射繞射 、殘留應變 、菊池圖 、數位影像相關係數法 |
| 外文關鍵詞: | Residual Strain Measurement, Kikuchi pattern, DIC, EBSD |
| 相關次數: | 點閱:75 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多半導體製程中,鍍膜與基板長因殘留應力而裂開剝落,因此殘留應力應變的測量在許多方面的研究上都是一直是重要課題。目前用來測量材料應變的方式已有很多,而殘留應力都是以間接方式,藉由測量應變而得到,最常見的是利用X-ray繞射繞射峰之位移與鑽孔法,然而這些方法適用於巨觀的殘留應力,對局部的殘留應力則必須藉助其它精密測量方法。
本研究為國內首次採用電子背向散射繞射量測殘留應變,其主要原理係利用取得未受應力與受應力後晶軸(zone axis)軸向偏移的菊池圖,利用數位影像相關系數法測量各菊池圖中各晶軸因應力而移動,以晶軸偏移計算殘留應變的分析方法。
實驗規劃為三個部份,首先測量以數位光學量測應變軟體之精準度,並探討可能造成的誤差原因;利用測量到的晶軸位移套入變形模型並計算各方向上的應力,最後並探討晶體異向性的影響。實驗結果發現,影像相關法所得到解析度可準確至0.01pixel,並在各種影像用運動中,包括橫向與縱向平移、旋轉等表現出極高的可靠性,然而在雜訊的影響下,準確率會有個位數像素的影響。
此次實驗採用氮化鋁磊晶層成長於{111}方向的矽基板上作為將殘留應變導入的手段,實驗結果在越接近磊晶層的的位置有越大的殘留應變出現,在影像的解析度上利用影像相關法可得到 3.6x10-3 radian/pixel的解析能能力。
然而在計算結果上有誤差發生,蓋因為所取得的圖形越接近兩種不同元素交界,電子的運動被界面上的缺陷所影響而造成菊池圖影像上非晶軸移動的變化,致使影像相關法的測量結果產生錯誤。所以在未來的利用上必須注意影像的品質等問題。
Measurement of residual stresses plays a central role at many applications, such as semiconductor industries. There are different methods to measure residual stress, for example, X-ray diffraction and blind-hole method. These methods are able to measure macroscopic residual stresses and cannot be applied to determine the local stresses at the microscopic scale.
In this study, this is the first time in Taiwan to combine electron backscattered diffraction and digital image correlation method integrated to determine residual stresses. The principle of this novel technique lies on the displacement of the zone axis in Kikuchi patterns obtained from the electron backscattered diffraction system after staining. Digital image correlation method is used to calculate the displacement of zone axis which will be served as input data for calculating residual strain.
Before applying this novel technique the resolution of this displacement measurement software should be characterized by shifting and rotating the Kikuchi pattern. The results show that the precision of the digital image correlation method is down to 0.01 pixels.
After determining the resolution of displacement measurement software, the residual strain measurement was performed on (111) silicon wafer with an epilayer of aluminum nitride, which has a lattice mismatch with Si wafer and residual strain is introduced in the silicon substrate. The results show that the larger strain is measured close to interface between Si/AlN, and the prescription of the method is 3.6x10-3 radian/pixel. However, the deviations at the calculation of the residual strain can result from the image quality of Kikuchi patterns. The dark area in the Kikuchi patterns can be introduced by interaction between electrons and the interface boundary. In addition, the overlapped Kikuchi patterns from two different orientations can be formed in the vicinity of grain boundaries. In future, the improvement of the image quality of Kikuchi patterns is our key point at the further development of this novel technique.
1. Bestmann, M.; Prior, D. J.; Grasemann, B., Characterisation of deformation and flow mechanics around porphyroclasts in a calcite marble ultramylonite by means of EBSD analysis. Tectonophysics 2006, 413, (3-4), 185-200.
2. Heidelbach, F.; Wenk, H. R.; Chen, S. R.; Pospiech, J.; Wright, S. I., Orientation and misorientation characteristics of annealed, rolled and recrystallized copper. Materials Science and Engineering 1996, 215, (1-2), 39-49.
3. Laird, C., Compatibility stresses in fatigued bicrystals: Dependence on misorientation and small plastic deformations. Acta Materialia 1997, 45, (12), 5129-5143.
4. Randle, V.; Owen, G., Mechanisms of grain boundary engineering. Acta Materialia 2006, 54, (7), 1777-1783.
5. Zaefferer, S.; Kuo, J. C.; Winning, M.; Raabe, D., On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 2003, 51, (16), 4719-4753.
6. Zhu, G. H.; Mao, W. M.; YU, Y. N., Nucleation of Cold Rolled FeCo Alloy during Annealing and Its Influence on the Formation of Recrystallization Texture. Journal of Materials Science & Technology 2000, 16, (5), 543-545.
7. Dingley, D. J.; Randle, V., Microtexture Determination by Electron Back-Scatter Diffraction. Journal of Materials Science 1992, 27, (17), 4545-4566.
8. Baba-Kishi, K. Z.; Dingley, D. J., Application of Backscatter Kikuchi Diffraction in the Scanning Electron Microscope to the Study of NiS2. Journal of Applied Crystallography 1989, 22, 189-200.
9. Wilkinson, A. J.; Dingley, D. J., Quantitative Deformation Studies Using Electron Back Scatter Patterns. Acta Metallurgica et Materialia 1991, 40, (12), 3047-3055.
10. Wilkinson, A. J.; Dingley, D. J.; Burns, G. P., In int. Proc. 12th Cong. on Electron Microscopy, San Francisco, 1990.
11. Troost, K. Z.; Sluis, P. v. d.; Gravesteijn, D. J., Microscale Elastic-Strain Determination by Backscatter Kikuchi Diffraction in the Scanning Electron Microscope. Applied Physics Letters 1993, 62, (10), 1110-1112.
12. Wilkinson, A. J., Measurement of Elastic Strains and Small Lattice Rotations Using Electron Back Scatter Diffraction. Ultramicroscopy 1996, 64, (4), 237-247.
13. Wilkinson, A. J., Methods for Determining Elastic Strains from Electron Backscatter Diffraction and Electron Channelling Patterns. Materials science and technology 1997, 13, (1), 79-84.
14. Wilkinson, A. J., Advances in SEM-Based Diffraction Studies of Defects and Strains in Semiconductors. Journal of Electron Microscopy 2000, 49, (2), 299-310.
15. Prior, D. J.; Boyle, A.; Brenker, F.; Cheadle, M. C.; Day, A., The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks. American Mineralogist 1999, 84, 1741-1759.
16. Randle, V.; Engler, O., Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping CRC Press: 2000.
17. 陳力俊等, 材料電子顯微鏡學. 儀器科技研究中心: 1994出版.
18. Coates, D. G., Kikuchi-Like Rrflection Patterns Obtained with the Scanning Electron Microscope. Philosophical Magazine 1967 16, (144), 1179-1184.
19. Essen, C. G. V.; Schulson, E. M., Selected area channelling patterns in the scanning electron. Journal of Materials Science 1969, 4, (4), 336-339.
20. Alam, M. N.; Blackman, M., High angle Kikuchi patterns. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1954, 221, (1145), 224-242.
21. Venables, J. A., Harland, C. J., Electron backscattering patterns–a new technique for obtaining crystallographic information in the scanning electron microscope. Philosophical Magazine 1973, 27, 1193-1200.
22. Dingley, D. J., On-Line Determination of Crystal Orientation and Texture Determination in an SEM. Royal Microscopical Society - RMS Proceedings 19, 74-75.
23. Krieger-Lassen, N. C. Automated Determination of Crystal Orientations from ElectronBackscattering Patterns. Danmarks Tekniske Universitet
Lyngby, 1994.
24. Schwartz, A. J.; Kumar, M.; Adams, B. L., Electron Backscatter Diffraction in Material Science. Springer: 2000.
25. Dingley, D. J., Progressive Steps in the Development of Electron Backscatter Diffraction and Orientation Imaging Microscopy. Journal of Microscopy 2004, 213, 214-224.
26. Humphreys, F. J., Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns. Journal of Research of the National Institute of Standards and Technology 1996, 101, (3), 301-308.
27. Goehner, R. P.; R., M. J., Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns. Journal of Research of the National Institute of Standards and Technology 1996, 101, (3), 301-308.
28. Quested, P. N.; J., H. P.; M., M., Observations of Deformation and Fracture Heterogeneities in a Nickel-Base Superalloy Using Electron Back Scattering Patterns. Acta Metallurgica 1988, 36, (10), 2743-2752.
29. Wilkinson, A. J.; Dingley, D. J., Quantitative Deformation Studies Using Electron Back Scatter Patterns. Acta Metallurgica 1991, 39, (12), 3047-3055.
30. Peter, W. H.; Ranson, W. F., Digital Imaging Techniques in Experimental Stress Aanlysis. Optical Engineering 1982, 21, (3), 427-432.
31. Peters, W. H.; He, Z. H.; Sutton, M. A.; Ranson, W. F., Two-Dimensional Fluid Velocity Measurements by use of Digital Speckle Correlation Techniques. Experimental Mechanics 1984, 24, (2), 117-121.
32. Chu, T. C.; Ranson, W. F.; Sutton, M. A.; Peters, W. H., Application of Digital-Image-Correlation Techniques to Experimental Mechanics. Experimental Mechanics 1985, 25, (2), 232-244.
33. Wu, W.; Peters, W. H.; Hammer, M., Basic Mechanical Properties of Retina in Simple Elongation. Journal of Biomechanical Engineering 1987, 109, 65-67.
34. Russell, S. S.; Sutton, M. A., Strain field analysis acquired through correlation of x-ray radiography of a fiber reinforced composite laminate. Experimental Mechanics 1989, 29, (1), 237-240.
35. Choi, S.; Shah, S. P., Measurement of Deformations on Concrete Subjected to Compression using Image Correlation. Experimental Mechanics 1997, 37, (3), 307-313.
36. Sun, Z.; Lyons, J. S.; McNeil, S. R., Measuring Microscopic Deformations with Digital Image Correlation. Optics and Lasers in Engineering 1997, 27, (4), 409-428.
37. Vendrous, G.; Knauss, W. G., Submicron Deformation Field Measurements: Part 2. Improved Digital Image Correlation. Experimental Mechanics 1998, 38, (2), 86-92.
38. Sharpe, W. N.; Turner, K. T.; Edwards, R. L., Tensile Testing of Polysilicon. Experimental Mechanics 1999, 39, (3), 162-170.
39. Chang, S.; Warren, J.; Chiang, F. P., Testing mechanical properties of EPON SU-8 with SIEM. In 2002 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Milwaukee, WI; USA, 2002.
40. Knauss, W. G.; Chasiotis, I., A New Microtensile Tester for the study of MEMS Materials with the aid of Atomic Force Microscopy. Experimental Mechanics 2002, 42, (1), 51-57.
41. Peters, W. H.; Ranson, W. F.; Sutton, M. A.; Chu, T. C.; Anderson, J., Applications of Digital Image Correlation Methods to Rigid Body Mechanics. Optical Engineering 1983, 22, (2), 738-742.
42. 李國誌. 應用數位影像關係法於微試件變形之量測. 國立成功大學, 2002.
43. 陳天賜. 應用數位影像相關法於微試件之測試. 國立成功大學, 2003.
44. Jeffrey, G. A.; Parry, G. S., Crystal Structure of Aluminum Nitride. The Journal of Chemical Physics 1955, 23, (406-416).
45. Streetman, B. G.; Banerjee, S., Solid state electronic devices. 5th ed.; Baker & Taylor Books: 2000.
46. Claves, S. R.; Deal, A., Orientation Dependence of EBSD Pattern Quality. Microsc Microanal 2005, 11, (2), 514-515.
47. Wortman, J. J.; Evans, R. A., Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium. Journal of Applied Physics 1965, 36, (1), 153-156.
48. Kim, J.; Cho, D. D.; Muller, R. S., Why Is (111) Silicon a Better Mechanical Material for MEMS? Transducers 2001, 22, 662-665.
49. Wright, S. I.; Nowell, M. M., EBSD Image Quality Mapping. Microscopy And Microanalysis 2006, 12, 1-13.
50. Nowell, M. Using Clean Up Routines and Partitioning to Identify and Improve EBSD Data Quality; 2005.