簡易檢索 / 詳目顯示

研究生: 李啓民
Lee, Chi-Ming
論文名稱: 基於GNSS-IR技術進行沿海及極區監測:海水面、海冰面及垂直和深度基準建立之應用
Coastal and Polar Monitoring based on GNSS-IR Technique: Applications to Sea Level, Sea Ice Freeboard, and Vertical/Depth Datum Establishment
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 188
中文關鍵詞: 全球導航衛星系統干涉反射技術奇異譜分析K-means聚類海水面海冰面垂直及深度基準
外文關鍵詞: GNSS-IR, SSA, K-means Clustering, Sea Level, Sea Ice Freeboard, Vertical and Depth Datum
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著全球暖化加劇,全球海水面持續上升,其中又以極區與沿岸地區影響最為嚴峻。臺灣作為四面環海的國家,亦面臨沿岸海水面上升的威脅,故能精確且持續地監測沿岸及極區海水面的長短期變化顯得至關重要。本研究利用全球導航衛星系統干涉反射技術(Global Navigation Satellite System Interferometric Reflectometry, GNSS-IR),並透過既有之GNSS連續站資料進行沿岸及極區監測工作。本研究重點包含以下三個方面:(1)評估不同GNSS-IR反射訊號萃取技術於沿岸海水面精度提升之效益、(2)整合多星系多頻之GNSS-IR資料提升觀測量時間解析度並進行極區沿岸海水面與海冰面變化之評估、(3)利用長期GNSS-IR資料計算臺灣西南部海水面變化趨勢,結合精密單點定位技術計算橢球海水面及深度基準之潮位面,並評估該結果是否能作為臺灣垂直與深度基準之同化資料。
    研究結果顯示,經比較四種訊號萃取方法:傳統二階擬合(Quadratic Fitting, QF)、經驗模態分解(Empirical Mode Decomposition, EMD)、總體經驗模態分解(Ensembled EMD, EEMD)及奇異譜分析(Singular Spectrum Analysis, SSA),發現SSA於不同測站高度及監測環境中均能提供穩定和準確的海水面觀測量,且均方根誤差(root-mean-square-error, RMSE )最多可降低59%(Onsala測站),加入調和分析輔助後可提供最高精度之海水面觀測量為5.7公分(Onsala測站)。此外,SSA能有效集中頻譜功率,提高訊號萃取的可靠度。相比之下,傳統的訊號萃取方法通常導致顯著的頻譜多峰問題,特別是當SNR數據不來自設計優化的觀測站時,將影響海水面觀測量的準確性。
    另外,本研究展示GNSS-IR技術於極地環境下進行沿岸海水面監測和海冰特徵識別的可行性。透過K-means聚類方法,以Lomb-Scargle Periodogram (LSP)所求得之振幅和峰噪比(Peak-to-Noise Ratio)特徵,成功區分了海水、海水+海冰(過渡期)和海冰表面條件,改善GNSS-IR於極區應用易受海冰影響之缺點。本研究亦使用共站之GNSS-IR成果進行比較,其相關係數超過0.95,RMSE大多低於14 cm,證實了不同硬體平台和不同衛星系統下GNSS-IR結果的一致性。與鄰近潮位站的比較進一步表明,GPS-L5和GPS-L2C頻率提供了最穩定和準確的結果,RMSE最小為13.3公分,相關係數最高為0.98。而多星系多頻率整合顯著降低了潮汐分潮振福及相位角因僅使用單一衛星系統所產生的偏差,振幅誤差最多降低68%。此外,本研究提出的加權方式保持了GNSS-IR觀測值的整體準確性不受偏差較大的觀測量影響,可提供觀測量之RMSE約為20公分(包含所有觀測時期)。總結來說,本研究證實GNSS-IR技術為一種自主、長期且高頻率監測極端環境下海水面和海冰動態的可行方法。在理想條件(如夏季開闊水域),GNSS-IR技術可達到公分級的精度,證明GNSS-IR技術有效補充傳統技術在觀測能力有限區域的不足,並在極地海水面及海冰動態監測中具有重要的應用前景。
    最後,本研究評估使用GNSS-IR技術應用於建立垂直和深度基準面的可行性。研究結果顯示,從潮位站和GNSS-IR計算得之平均海水面(Mean Sea Surface, MSS),平均基準偏移為11.6公分。至於長期海水面變化,GNSS-IR求得之海水面趨勢與衛星測高結果相比,與潮位站計算得之趨勢更為一致。具體來說,高雄測站觀測到的海水面上升約為3-4 mm/yr。關於建立深度基準之潮汐面,尤其是最低天文潮(Lowest Astronomical Tide, LAT),潮位站和GNSS-IR觀測值之差異僅為幾毫米,這表明GNSS-IR技術能有效偵測大部分潮汐特徵和模式,達到與傳統潮位站相當的精度。
    總體而言,本研究成功展示了GNSS-IR技術在不同地區應用的潛力,並在不同研究課題上皆有豐碩的成果,本研究成果可為大地測量、地球科學、極地研究及全球氣候變遷做出十足貢獻。

    In recent years, the intensification of global warming has led to a continuous rise in global sea levels, with polar and coastal regions being particularly vulnerable. As an island nation, Taiwan is especially susceptible to the impacts of coastal sea level rise. Therefore, it is crucial to accurately and continuously monitor both long-term and short-term sea level variations in these sensitive regions. This study utilizes Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology, leveraging existing continuous GNSS station data, to monitor the coastal and polar regions. The focus of this study includes the following three aspects: (1) to evaluate the effectiveness of different GNSS-IR signal extraction techniques in improving the accuracy of coastal sea level measurements; (2) to integrate multi-constellation and multi-frequency GNSS-IR data to enhance temporal resolution and assess polar coastal sea level and sea ice freeboard changes, and (3) to utilize long-term GNSS-IR data to calculate the sea level trend in the southwestern part of Taiwan, and to combine precise point positioning (PPP) to determine ellipsoidal sea surface heights and tidal surfaces for potential application in establishing Taiwan vertical and depth datums.
    The results show that after comparing four signal extraction methods, including traditional quadratic fitting (QF), Empirical Mode Decomposition (EMD), Ensemble EMD (EEMD), and Singular Spectrum Analysis (SSA), it was found that SSA consistently provides stable and accurate sea level measurements across different station heights and monitoring environments. The root-mean-square-error (RMSE) can be reduced by up to 59%, and after incorporating harmonic analysis, the highest precision for sea level measurements reaches 5.7 cm at the Onsala station. Furthermore, SSA effectively concentrates spectral power, improving the reliability of signal extraction. In contrast, traditional signal extraction method (QF) often lead to significant spectral multi-peaks, especially when the SNR data is not derived from optimally designed GNSS-IR stations, which affects the accuracy of sea level measurements.
    Additionally, this study demonstrates the feasibility of applying GNSS-IR technology for coastal sea level and sea ice monitoring in polar regions. Using the K-means clustering, along with the amplitude and Peak-to-Noise Ratio (PNR) features derived from the Lomb-Scargle Periodogram (LSP), we successfully distinguished sea water-only, sea water + sea ice, and sea ice-only, thereby improving GNSS-IR’s performance in polar regions, which is often affected by sea ice. A comparison of co-located GNSS-IR results shows a correlation coefficient greater than 0.95, with an RMSE generally below 14 cm, confirming the consistency of GNSS-IR results across different hardware platforms and satellite systems. Furthermore, comparisons with nearby tide stations further indicate that GPS-L5 and GPS-L2C frequencies provide the most stable and accurate results, with the smallest RMSE of 13.3 cm and the highest correlation coefficient of 0.98. Multi-constellation and multi-frequency integration significantly reduced errors in tidal harmonics and phase angles caused by using only a single satellite system, with amplitude errors reduced by 68%. Moreover, the proposed weighting method in this study maintained the overall accuracy of GNSS-IR measurements, ensuring that measurements with large deviations did not degrade the results, providing an RMSE of approximately 20 cm (for all observation periods).In summary, this study confirms that GNSS-IR technology is a viable method for autonomous, long-term, and high-frequency monitoring of sea level and sea ice dynamics in extreme environments. Under ideal conditions (such as in summer open water), GNSS-IR technology can achieve centimeter-level accuracy, demonstrating that it can effectively complement traditional technologies in regions with limited observational capabilities, offering significant progress in polar sea level and sea ice monitoring.
    Finally, this study evaluates the feasibility of applying GNSS-IR technology to establish vertical and depth datums. The results show that the mean sea surface (MSS) derived from tide stations and GNSS-IR has an average datum offset of 11.6 cm. Regarding long-term sea level changes, the sea level trend obtained from GNSS-IR is more consistent with the trend derived from tide stations compared to satellite altimetry data. Specifically, the sea level rise observed at the Kaohsiung station was approximately 3-4 mm/yr. As for the establishment of depth reference tidal surfaces, particularly the Lowest Astronomical Tide (LAT), the difference between the tide station and GNSS-IR observations was only a few millimeters, indicating that GNSS-IR technology can effectively capture most tidal features and patterns, achieving accuracy comparable to that of conventional tide gauges.
    Overall, this study successfully demonstrates the potential of GNSS-IR technology for applications in various regions and research topics, contributing significantly to geodesy, Earth sciences, polar research, and global climate change.

    中文摘要 I ABSTRACT III 誌謝 VI Table of Contents VII List of Tables X List of Figures XII List of Abbreviations XVII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objectives 10 1.3 Dissertation Outline 11 Chapter 2 Principles of Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) 13 2.1 Introduction of GNSS 13 2.1.1 GNSS Architecture 13 2.1.2 GNSS Signals and Observables 16 2.1.3 Global GNSS Systems 17 2.2 GNSS Reflected Signals 20 2.2.1 Signal Polarization 20 2.2.2 Fresnel Zone 23 2.3 Ground-based GNSS-IR Technique 27 2.3.1 GNSS SNR Theory 28 2.3.2 Lomb-Scargle Periodogram (LSP) 32 2.3.3 Error Sources and Corrections 34 Chapter 3 Performance Evaluation of Different Reflected Signal Extraction Methods on GNSS-IR derived Sea Level Height 38 3.1 Introduction 38 3.2 Research Area and Data 42 3.2.1 Onsala, Sweden 42 3.2.2 Friday Harbor, the United States 42 3.2.3 Brest, France 43 3.3 Methodology 45 3.3.1 Reflected Signal Extraction 47 3.3.2 Spectral Analysis: Lomb-Scargle Periodogram (LSP) assisted with tidal harmonic analysis 55 3.4 Results 57 3.4.1 Sea level results without the constraint of tidal harmonic analysis 57 3.4.2 Sea level results aided by tidal harmonic analysis 60 3.4.3 Ocean tidal analysis 65 3.5 Discussions 69 3.6 Chapter Summary 74 Chapter 4 Monitoring Coastal Sea Level and Sea Ice Freeboard Variations in Polar Regions using GNSS Interferometric Reflectometry Technique 76 4.1 Introduction 76 4.2 Research Area and Data 79 4.2.1 Research Area 79 4.2.2 Data 81 4.3 Methodology 86 4.3.1 Multi-frequency and Multi-constellation Integration 86 4.3.2 K-Means Clustering for Reflective Surface Classification 87 4.3.3 Polar GNSS-IR Processing Procedures 90 4.4 Results and Discussions 91 4.4.1 Reflective Surface Clustering 91 4.4.2 Sea Level Monitoring 94 4.4.3 Sea Ice Freeboard Variations 102 4.4.4 Recommendations for Deploying GNSS-IR Stations in Polar Regions 106 4.5 Chapter Summary 107 Chapter 5 Feasibility Assessment of Defining Taiwan’s Vertical and Depth Datums using Coastal GNSS-IR Altimetry 109 5.1 Introduction 109 5.2 Research Area and Datasets 112 5.2.1 Research Area 112 5.2.2 Datasets 113 5.3 Methodology 118 5.3.1 Precise Point Positioning (PPP) 118 5.3.2 Inverse Barometer (IB) correction 119 5.3.3 Mean Sea Surface (MSS) Computation 120 5.3.4 Depth Datum Computation 123 5.3.5 Research Workflow 124 5.4 Results 125 5.4.1 GNSS-IR Sea Level Height 125 5.4.2 MSS compared to Tide Gauge 128 5.4.3 Relative and Absolute Sea Level Changes 129 5.4.4 Surfaces in Depth Datum 131 5.5 Discussions 133 5.6 Chapter Summary 135 Chapter 6 Conclusions and Future Work 136 6.1 Conclusions 136 6.2 Future Work 138 REFERENCE 141

    內政部國土測繪中心。(2023)。112年度融合多元感測成果精進臺灣高程基準委託研究期末報告。
    張憲國、史天元。(2022)。最低天文潮位計算標準作業程序探討,國土測繪與空間資訊,10(1),第1-19頁。
    劉啟清。(1998)。台灣地區驗潮站長期監測資料之計算及高程基準網之建立工作,內政部。
    Andersen, O. B., & Piccioni, G. (2016). Recent Arctic sea level variations from satellites. Frontiers in Marine Science, 3, 76. DOI:10.3389/fmars.2016.00076
    Ansari, K., Bae, T. S., & Inyurt, S. (2020). Global positioning system interferometric reflectometry for accurate tide gauge measurement: Insights from South Beach, Oregon, United States. Acta Astronautica, 173, 356-362. DOI:10.1016/j.actaastro.2020.04.060
    Ansari, K. (2023). Review on Role of Multi-Constellation Global Navigation Satellite System-Reflectometry (GNSS-R) for Real-Time Sea-Level Measurements. Structural Geology and Tectonics Field Guidebook—Volume 2, 333-358. DOI:10.1007/978-3-031-19576-1_13.
    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., & Cooke, R. M. (2019). Ice sheet contributions to future sea-level rise from structured expert judgment. Proceedings of the National Academy of Sciences, 116(23), 11195-11200. DOI:10.1073/pnas.1817205116
    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., & Cooke, R. M. (2022). Ice sheet and climate processes driving the uncertainty in projections of future sea level rise: Findings from a structured expert judgement approach. Earth's Future, 10(10), e2022EF002772. DOI:10.1029/2022EF002772
    Beckheinrich, J., Hirrle, A., Schön, S., Beyerle, G., Semmling, M., & Wickert, J. (2014, July). Water level monitoring of the Mekong Delta using GNSS reflectometry technique. In 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, pp. 3798-3801. DOI:10.1109/IGARSS.2014.6947311
    Bennett, G. G. (1982). The calculation of astronomical refraction in marine navigation. The Journal of Navigation, 35(2), 255-259. DOI:10.1017/S0373463300022037
    Betz, J. W. (2015). Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers. John Wiley & Sons. DOI:10.1002/9781119141167
    Bilich, A., & Larson, K. M. (2007). Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(06), 1-16. DOI:10.1029/2007RS003652
    Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research: Solid Earth, 113(B4). DOI:10.1029/2007JB005194
    Birol, F., Fuller, N., Lyard, F., Cancet, M., Niño , F., Delebecque, C.,  Fleury, S., Toublanc, F., Melet, A., Saraceno, M.,& Léger, F. (2017). Coastal applications from nadir altimetry: Example of the X-TRACK regional products. Advances in Space Research, 59(4), 936-953. DOI:10.1016/j.asr.2016.11.005
    Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GPS station velocities without step detection. Journal of Geophysical Research: Solid Earth, 121(3), 2054-2068. DOI:10.1002/2015JB012552
    Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. DOI:10.1029/2018EO104623
    Boehm, J., & Schuh, H. (2004). Vienna mapping functions in VLBI analyses. Geophysical Research Letters, 31(1). doi:10.1029/2003GL018984
    Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(B2). DOI:10.1029/2005JB003629
    Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2014). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS solutions, 19, 433-441. DOI:10.1007/s10291-014-0403-7
    Bolbol, S., Ali, A. H., El-Sayed, M. S., & Elbeah, M. N. (2017). Performance evaluation of precise point positioning (PPP) using CSRS-PPP online service. American Journal of Geographic Information System, 6(4), 156-167. DOI: 10.5923/j.ajgis.20170604.03
    Borre, K., Akos, D. M., Bertelsen, N., Rinder, P., & Jensen S. H. (2007). A Software-Defined GPS and Galileo Receiver: A Single-Frequency Approach. Springer Science & Business Media.
    Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., & Rahmstorf, S. (2021). Current Atlantic meridional overturning circulation weakest in last millennium. Nature Geoscience, 14(3), 118-120. DOI:10.1038/s41561-021-00699-z
    Cai, C., & Gao, Y. (2007). Precise point positioning using combined GPS and GLONASS observations. Positioning, 1(11).
    Carayannis, G., Manolakis, D., & Kalouptsidis, N. (1983). A fast sequential algorithm for least-squares filtering and prediction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31(6), 1394-1402. DOI:10.1109/CDC.1983.269878
    Cavalieri, D. J., Gloersen, P., & Campbell, W. J. (1984). Determination of sea ice parameters with the Nimbus 7 SMMR. Journal of Geophysical Research: Atmospheres, 89(D4), 5355-5369. DOI:10.1029/JD089iD04p05355
    Cazenave, A., & Nerem, R. S. (2004). Present‐day sea level change: Observations and causes. Reviews of Geophysics, 42(3). DOI:10.1029/2003RG000139
    Cazenave, A., & Llovel, W. (2010). Contemporary sea level rise. Annual Review of Marine Science, 2(1), 145-173. DOI:10.1146/annurev-marine-120308-081105
    Chang, H. K., Cheng, C. C., & Shih, P. T. Y. (2023). On the variation of LAT resulting from predictions computed using different tidal constituent sets. Journal of the Chinese Institute of Engineers, 46(1), 31-38. DOI:10.1080/02533839.2022.2141342
    Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., & Callahan, P. S. (2001). Satellite altimetry. International Geophysics, 69, 1-ii. DOI:10.1016/S0074-6142(01)80146-7
    Chew, C. C., Small, E. E., Larson, K. M., & Zavorotny, V. U. (2013). Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 537-543. DOI:10.1109/TGRS.2013.2242332
    Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8). DOI:10.1029/2011JB008242
    Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., & Prandi, P. (2017). Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surveys in Geophysics, 38, 33-57.
    Comiso, J. C. (1986). Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research: Oceans, 91(C1), 975-994. DOI:10.1029/JC091iC01p00975
    Dahl-Jensen, T. S., Andersen, O. B., Williams, S. D., Helm, V., & Khan, S. A. (2021). GNSS-IR measurements of inter annual sea level variations in Thule, Greenland from 2008–2019. Remote Sensing, 13(24), 5077. DOI:10.3390/rs13245077
    Dalrymple, R.A., L.C. Breaker, B.A. Brooks, D.R. Cayan, G.B. Griggs, W. Han, B.P., Horton, C.L. Hulbe, J.C. McWilliams, & P.W. Mote. (2012). Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. The National Academies Press: Washington, DC, USA, pp. 1–217. DOI:10.17226/13389
    Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, (2), 224-227. DOI:10.1109/TPAMI.1979.4766909
    DeConto, R. M., & Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531(7596), 591-597. DOI:10.1038/nature17145
    Doodson, A. T. (1928). VI. The analysis of tidal observations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 227(647-658), 223-279. DOI:10.1098/rsta.1928.0006
    Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S.,& Raymo, M. E. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349(6244), aaa4019. DOI:10.1126/science.aaa4019
    Enge, P. K. (1994). The global positioning system: Signals, measurements, and performance. International Journal of Wireless Information Networks, 1, 83-105. DOI:10.1007/BF02106512
    Estey, L. H., & Meertens, C. M. (1999). TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS solutions, 3(1), 42-49. DOI:10.1007/PL00012778.
    Filmer, M. S., Johnston, P. J., Jayaswal, Z., Taylor, A., Chittleborough, J., Claessens, S. J., Seifi, F., Kuhn, M., McCubbine, J., & Entel, M. (2024). Connecting Land and Sea Vertical Datums: A Data Evaluation for Developing Australia’s AUSHYDROID Model. Marine Geodesy, 47(3), 183-213. DOI:10.1080/01490419.2024.2305898
    Foreman, M. G., Cherniawsky, J. Y., & Ballantyne, V. A. (2009). Versatile harmonic tidal analysis: Improvements and applications. Journal of Atmospheric and Oceanic Technology, 26(4), 806-817. DOI:10.1175/2008JTECHO615.1
    Francis, J., & Skific, N. (2015). Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045), 20140170. DOI:10.1098/rsta.2014.0170
    Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., & Wu, Y. H. (2020). The causes of sea-level rise since 1900. Nature, 584(7821), 393-397. DOI:10.1038/s41586-020-2591-3
    Fu, Y., Feng, Y., Zhou, D., & Zhou, X. (2021). Absolute sea level variability of Arctic Ocean in 1993–2018 from satellite altimetry and tide gauge observations. Acta Oceanologica Sinica, 40, 76-83. DOI:10.1007/s13131-021-1820-4
    Gómez-Enri, J., Vignudelli, S., Cipollini, P., Coca, J., & González, C. J. (2018). Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain). Advances in Space Research, 62(6), 1405-1420. DOI:10.1016/j.asr.2017.10.042.
    Gregory, J. M., White, N. J., Church, J. A., Bierkens, M. F., Box, J. E., Van den Broeke, M. R., Cogley, J. G., Fettweis, X., Hanna, E., Huybrechts, P., Konikow, L. F., Leclercq, P. W., Marzeion, B., Oerlemans, J., Tamisiea, M. E., Wada, Y., Wake, L. M., & Van De Wal, R. S. (2013). Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts?. Journal of Climate, 26(13), 4476-4499. DOI:10.1175/JCLI-D-12-00319.1
    Haigh, I. D., Eliot, M., & Pattiaratchi, C. (2011). Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research: Oceans, 116(C6). DOI:10.1029/2010JC006645
    Hammond, W. C., Blewitt, G., & Kreemer, C. (2016). GPS imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift. Journal of Geophysical Research: Solid Earth, 121(10), 7681-7703. DOI:10.1002/2016JB013458
    Hannah, B. M. (2001). Modelling and simulation of GPS multipath propagation. Doctoral dissertation, Queensland University of Technology.
    Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. DOI:10.2307/2346830
    Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023). ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.f17050d7 (Accessed on 15-10-2024)
    Hocker, B., & Wardwell, N. (2010, September). Tidal datum determination and VDatum evaluation with a GNSS buoy. In Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA, pp. 2076-2086.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
    Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Peter, R. F., Gordon, K. M., Jevrejeva, S., & Pugh, J. (2013). New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29(3), 493-504. DOI:10.2112/JCOASTRES-D-12-00175.1
    Hristov, H. D. (2000). Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas. Artech House, Inc.
    Hsu, C. W., & Velicogna, I. (2017). Detection of sea level fingerprints derived from GRACE gravity data. Geophysical Research Letters, 44(17), 8953-8961. DOI:10.1002/2017GL074070
    Hu, Y., Liu, L., Larson, K. M., Schaefer, K. M., Zhang, J., & Yao, Y. (2018). GPS interferometric reflectometry reveals cyclic elevation changes in thaw and freezing seasons in a permafrost area (Barrow, Alaska). Geophysical Research Letters, 45(11), 5581-5589. DOI:10.1029/2018GL077960
    Hu, Y., Yuan, X., Liu, W., Wickert, J., & Jiang, Z. (2022). GNSS-R snow depth inversion based on variational mode decomposition with multi-GNSS constellations. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12. DOI:10.1109/TGRS.2022.3182987
    Huang, M. H., Bürgmann, R., & Hu, J. C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-264. DOI:10.1016/j.tecto.2016.02.021
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995. DOI:10.1098/rspa.1998.0193.
    Huang, N. E., Wu, M. L. C., Long, S. R., Shen, S. S., Qu, W., Gloersen, P., & Fan, K. L. (2003). A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2037), 2317-2345. DOI:10.1098/rspa.2003.1123
    Hung, W. C., Hwang, C., Chen, Y. A., Chang, C. P., Yen, J. Y., Hooper, A., & Yang, C. Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967. DOI:10.1016/j.rse.2010.11.007
    Hsiao, Y. S., Hwang, C., Chen, T. W., & Cho, Y. H. (2023). Assessing models of sea level rise and mean sea surface with Sentinel-3B and Jason-3 altimeter data near Taiwan: impacts of data quality and length. Remote Sensing, 15(14), 3640. DOI:10.3390/rs15143640
    Ihde, J., Sánchez, L., Barzaghi, R., Drewes, H., Foerste, C., Gruber, T., Liebsch, G., Marti, U., Pail, R., & Sideris, M. (2017). Definition and proposed realization of the International Height Reference System (IHRS). Surveys in Geophysics, 38, 549-570. DOI:10.1007/s10712-017-9409-3
    Iliffe, J. C., Ziebart, M. K., & Turner, J. F. (2007). A new methodology for incorporating tide gauge data in sea surface topography models. Marine Geodesy, 30(4), 271-296. DOI:10.1080/01490410701568384
    International Hydrographic Organization. (2020). IHO Standards for Hydrographic Surveys (S-44) (6th ed.). IHO Publication S-44.
    Intergovernmental Oceanographic Commission (IOC). (2018). Workshop on Sea-Level Measurements in Hostile Conditions, Moscow, Russian Federation.
    IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Chang. Cambridge University Press, Cambridge. DOI:10.1017/9781009157896Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., & Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11-22. DOI: 10.1016/j.gloplacha.2013.12.004
    Kalantari, M., & Hassani, H. (2019). Automatic grouping in singular spectrum analysis. Forecasting, 1(1), 189-204. DOI:10.3390/forecast1010013.
    Kaplan, E. D., & Hegarty, C. (2017). Understanding GPS/GNSS: Principles and Applications. Artech house.
    Karaim, M., Elsheikh, M., Noureldin, A., & Rustamov, R. B. (2018). GNSS error sources. Multifunctional Operation and Application of GPS, 32, 137-144. DOI:10.5772/intechopen.75493
    Kim, S. K., & Park, J. (2019, January). Monitoring sea level change in arctic using GNSS-reflectometry. In Proceedings of the 2019 International Technical Meeting of the Institute of Navigation, Reston, VA, USA, pp. 665-675. DOI:10.33012/2019.16717
    King, M. A., & Padman, L. (2005). Accuracy assessment of ocean tide models around Antarctica. Geophysical Research Letters, 32(23). DOI:10.1029/2005GL023901
    Kuo, C. Y., Yang, T. Y., Kao, H. C., Wang, C. K., Lan, W. H., & Tseng, H. Z. (2018). Improvement of Envisat Altimetric Measurements in Taiwan Coastal Oceans by a Developed Waveform Retracking System. Journal of Environmental Informatics, 31(1). DOI:10.3808/jei.201500324
    Lan, W. H., Kuo, C. Y., Kao, H. C., Lin, L. C., Shum, C. K., Tseng, K. H., & Chang, J. C. (2017). Impact of geophysical and datum corrections on absolute sea-level trends from tide gauges around Taiwan, 1993–2015. Water, 9(7), 480. DOI:10.3390/w9070480
    Lan, W. H., Lee, C. M., Kuo, C. Y., Lin, L. C., & Handoko, E. Y. (2024). Regional sea level budget around Taiwan and Philippines over 2002‒2021 inferred from GRACE, altimetry, and in-situ hydrographic data. Journal of Geodesy, 99(1), 5. DOI:10.1007/s00190-024-01928-0
    Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS solutions, 12(3), 173-177. DOI:10.1007/s10291-007-0076-6
    Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009). Can we measure snow depth with GPS receivers?. Geophysical Research Letters, 36(17). DOI:10.1029/2009GL039430
    Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS solutions, 17, 41-52. DOI:10.1007/s10291-012-0259-7
    Larson, K. M., Löfgren, J. S., & Haas, R. (2013a). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301-1310. DOI:10.1016/j.asr.2012.04.017
    Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013b). The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200-1204. DOI:10.1109/LGRS.2012.2236075
    Larson, K. M., Ray, R. D., & Williams, S. D. (2017). A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology, 34(2), 295-307. DOI:10.1175/JTECH-D-16-0101.1
    Lee, C. M., Kuo, C. Y., Sun, J., Tseng, T. P., Chen, K. H., Lan, W. H., Shum, C. K., Ali, T., Ching, K. E., Chu, P., & Jia, Y. (2019). Evaluation and improvement of coastal GNSS reflectometry sea level variations from existing GNSS stations in Taiwan. Advances in Space Research, 63(3), 1280-1288. DOI:10.1016/j.asr.2018.10.039
    Lee, C. M., Fu, C. Y., Lan, W. H., & Kuo, C. Y. (2024). Performance evaluation of different reflected signal extraction methods on GNSS-R derived sea level heights. Advances in Space Research, 74(1), 89-104. DOI:10.1016/j.asr.2024.03.048
    Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying. John Wiley & Sons.
    Li, L., Qiu, Q., Ye, M., Peng, D., Hsu, Y. J., Wang, P., Shi, H., Larson, K. M., & Zhang, P. (2024). Island-based GNSS-IR network for tsunami detecting and warning. Coastal Engineering, 190, 104501. DOI:10.1016/j.coastaleng.2024.104501
    Limkilde Svendsen, P., Andersen, O. B., & Aasbjerg Nielsen, A. (2016). Stable reconstruction of Arctic sea level for the 1950–2010 period. Journal of Geophysical Research: Oceans, 121(8), 5697-5710. DOI:10.1002/2016JC011685
    Liu, L., & Larson, K. M. (2018). Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals. The Cryosphere, 12(2), 477-489. DOI:10.5194/tc-12-477-2018
    Liu, W., & Fedorov, A. V. (2019). Global impacts of Arctic sea ice loss mediated by the Atlantic meridional overturning circulation. Geophysical Research Letters, 46(2), 944-952. DOI:10.1029/2018GL080602
    Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. Journal of Climate, 32(4), 977-996. DOI:10.1175/JCLI-D-18-0231.1
    Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. DOI:10.1109/TIT.1982.1056489
    Löfgren, J. S., Haas, R., & Johansson, J. M. (2011a). Monitoring coastal sea level using reflected GNSS signals. Advances in Space Research, 47(2), 213-220. DOI:10.1016/j.asr.2010.08.015.
    Löfgren, J. S., Haas, R., Scherneck, H. G., & Bos, M. S. (2011b). Three months of local sea level derived from reflected GNSS signals. Radio Science, 46(06), 1-12. DOI:10.1029/2011RS004693
    Löfgren, J. (2014). Local sea level observations using reflected GNSS signals. Doctoral dissertation, Chalmers Tekniska Hogskola.
    Löfgren, J. S., Haas, R., & Scherneck, H. G. (2014). Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics, 80, 66-80. DOI:10.1016/j.jog.2014.02.012
    Löfgren, J. S., & Haas, R. (2014). Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP Journal on Advances in Signal Processing, 2014(1), 50. DOI:10.1186/1687-6180-2014-50
    Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Ccience, 39(2), 447-462. DOI:10.1007/BF00648343
    Lucas, S., Johannessen, J. A., Cancet, M., Pettersson, L. H., Esau, I., Rheinlænder, J. W., Ardhuin, F., Chapron, B., Korosov, A., Collard, F., Herlédan, S., Olason, E., Ferrari, R., Fouchet, E., & Donlon, C. (2023). Knowledge gaps and impact of future satellite missions to facilitate monitoring of changes in the Arctic Ocean. Remote Sensing, 15(11), 2852. DOI:10.3390/rs15112852
    MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297.
    Maral, G., Bousquet, M., & Sun, Z. (2020). Satellite Communications Systems: Systems, Techniques and Technology. John Wiley & Sons.
    Martin Míguez, B., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: towards mm-level accuracy. Scientia Marina, 76(S1), 221-228. DOI:10.3989/scimar.03618.18A
    Martin-Neira, M. (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA journal, 17(4), 331-355.
    Maslowski, W., Clement Kinney, J., Higgins, M., & Roberts, A. (2012). The future of Arctic sea ice. Annual Review of Earth and Planetary Sciences, 40(1), 625-654. DOI:10.1146/annurev-earth-042711-105345
    Meier, W. N., Peng, G., Scott, D. J., & Savoie, M. H. (2014). Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record. Polar Research, 33(1), 21004. DOI:10.3402/polar.v33.21004
    Meier, W. N., Windnagel, A., & Stewart, S. (2024). Sea Ice Concentration - Climate Algorithm Theoretical Basis Document (C-ATBD), NOAA Climate Data Record Program CDRP-ATBD-0107, Rev. 11. NOAA NCEI CDR Program. https://nsidc.org/sites/default/files/documents/technicalreference/cdrp-atbd-rev11-sic-cdrv5-final.pdf.
    Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., & Milne, G. A. (2001). Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409(6823), 1026-1029. DOI:10.1038/35059054
    Nievinski, F. G., & Larson, K. M. (2014a). Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and simulations. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6555-6563. DOI:10.1109/TGRS.2013.2297681
    Nievinski, F. G., & Larson, K. M. (2014b). Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6564-6573. DOI:10.1109/TGRS.2013.2297688
    Nievinski, F. G., & Hobiger, T. (2019). Site guidelines for multi-purpose GNSS reflectometry stations. Zenodo.
    Nievinski, F. G., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi, S., Vey, S., Wickert, J., & Williams, S. (2020). SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8), 70. DOI:10.1007/s00190-020-01387-3
    Oelsmann, J., Marcos, M., Passaro, M., Sanchez, L., Dettmering, D., Dangendorf, S., & Seitz, F. (2024). Regional variations in relative sea-level changes influenced by nonlinear vertical land motion. Nature Geoscience, 17(2), 137-144. DOI:10.1038/s41561-023-01357-2
    Oppenheimer, M., Glavovic, B. C., Hinkel J., Wal, R. van de., Magnan, A. K., Elgawad A. A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., & Z. Sebesvari. (2019). Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. Cambridge University Press, 321–445. DOI:10.1017/9781009157964.006.
    Parker, B., Milbert, D., Hess, K., & Gill, S. (2003, March). National VDatum–The implementation of a national vertical datum transformation database. In Proceeding from the US Hydro’2003 Conference, Christchurch, New Zealand, pp. 24-27.
    Parker, B. (2007). Tidal analysis and prediction, NOAA Special Publication NOS CO-OPS, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Center for Operational Oceanographic Products and Servies.
    Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937. DOI:10.1016/S0098-3004(02)00013-4.
    Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1), 450-487. DOI:10.1002/2014JB011176
    Peng, D., Hill, E. M., Li, L., Switzer, A. D., & Larson, K. M. (2019). Application of GNSS interferometric reflectometry for detecting storm surges. GPS solutions, 23, 1-11. DOI:10.1007/s10291-019-0838-y
    Peng, D., Feng, L., Larson, K. M., & Hill, E. M. (2021). Measuring coastal absolute sea-level changes using GNSS interferometric reflectometry. Remote Sensing, 13(21), 4319. DOI:10.3390/rs13214319
    Peng, F., & Deng, X. (2020). Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region. Remote Sensing of Environment, 237, 111548. DOI:10.1016/j.rse.2019.111548.
    Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos, M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin, F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave, A., Mey-Frémaux, P. D., Durand, F., Ezer, T., Fu, L. L., Fukumori, I., Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes, C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A., Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch, C., Ray, R. D., Rickards, L., Santamaría-Gómez, A., Stammer, D., Staneva, J., Testut, L., Thompson, K., Thompson, P., Vigudelli, S., Williams, J., Williams, S. D. P., Wöppelmann, G., Zanna, L., & Zhang, X. (2019). Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, 6, 437. DOI:10.3389/fmars.2019.00437
    Press, W. H. (1992). The Art of Scientific Computing. Cambridge university press.
    Pugh, D. (1987), Tides, Surges, and Mean Sea Level, John Wiley.
    Pugh, D. (2014). Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press.
    Raiabi, M., Hoseini, M., Nahavandchi, H., Semmling, M., Ramatschi, M., Goli, M., Hass, R., & Wickert, J. (2021, July). A Performance Assessment of Polarimetric GNSS-R Sea Level Monitoring in the Presence of Sea Surface Roughness. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 8328-8331. DOI:10.1109/IGARSS47720.2021.9554562.
    Rees, G. (2013). Physical Principles of Remote Sensing. Cambridge university press.
    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. T. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5). DOI:10.1029/2011GL046583
    Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., & Morlighem, M. (2019). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116(4), 1095-1103. DOI:10.1073/pnas.1812883116
    Rose, S. K., Andersen, O. B., Passaro, M., Ludwigsen, C. A., & Schwatke, C. (2019). Arctic Ocean sea level record from the complete radar altimetry era: 1991–2018. Remote Sensing, 11(14), 1672. DOI:10.3390/rs11141672
    Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Desjardins, C., Gegout, P., Pérosanz, F., & Biancale, R. (2014). Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments. Geoscientific Model Development, 7(5), 2261-2279. DOI:10.5194/gmd-7-2261-2014.
    Roussel, N., Ramillien, G., Frappart, F., Darrozes, J., Gay, A., Biancale, R., Striebig, N., Hanquiez, V., Bertin, X., & Allain, D. (2015). Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sensing of Environment, 171, 261-277. DOI:10.1016/j.rse.2015.10.011
    Rye, C. D., Naveira Garabato, A. C., Holland, P. R., Meredith, M. P., George Nurser, A. J., Hughes, C. W., Coward, A. C., & Webb, D. J. (2014). Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geoscience, 7(10), 732-735. DOI:10.1038/ngeo2230Sánchez, L., & Sideris, M. G. (2017). Vertical datum unification for the international height reference system (IHRS). Geophysical Journal International, 209(2), 570-586. DOI:10.1093/gji/ggx025
    Santamaría-Gómez, A., Watson, C., Gravelle, M., King, M., & Wöppelmann, G. (2015). Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. Journal of Geodesy, 89(3), 241-258. DOI:10.1007/s00190-014-0784-y
    Santamaría-Gómez, A., & Watson, C. (2017). Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS solutions, 21, 451-459. DOI:10.1007/s10291-016-0537-x
    Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263, 835-853.
    Schwartz, M. (2006). Encyclopedia of Coastal Science. Springer Science & Business Media.
    Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334-1337. DOI:10.1038/nature09051
    Scott, S. L. (2002). Bayesian methods for Hidden Markov Models: Recursive computing in the 21st century. Journal of the American statistical Association, 97(457), 337-351. DOI:10.1198/016214502753479464
    Seeber, G. (2003). Satellite Geodesy. Walter de gruyter.
    Selbesoğlu, M. O. (2023). Multi-GNSS reflectometry performance evaluation for coastal sea level monitoring: A case study in Antarctic Peninsula. Advances in Space Research, 71(7), 2990-2995. DOI:10.1016/j.asr.2022.11.057
    Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7(8), 604-610. DOI:10.1038/nclimate3353
    Shepherd, A., & Wingham, D. (2007). Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315(5818), 1529-1532. DOI:10.1126/science.1136776
    Shum, C. K., Ries, J. C., & Tapley, B. D. (1995). The accuracy and applications of satellite altimetry. Geophysical Journal International, 121(2), 321-336. DOI:10.1111/j.1365-246X.1995.tb05714.x
    Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., & Nienow, P. (2021). Earth's ice imbalance. The Cryosphere15(1), 233-246. DOI:10.5194/tc-15-233-2021
    Slobbe, D. C., Klees, R., Verlaan, M., Dorst, L. L., & Gerritsen, H. (2013). Lowest astronomical tide in the North Sea derived from a vertically referenced shallow water model, and an assessment of its suggested sense of safety. Marine Geodesy, 36(1), 31-71. DOI:10.1080/01490419.2012.743493
    Small, E. E., Larson, K. M., Chew, C. C., Dong, J., & Ochsner, T. E. (2016). Validation of GPS-IR soil moisture retrievals: Comparison of different algorithms to remove vegetation effects. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4759-4770. DOI:10.1109/JSTARS.2015.2504527
    Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried M. R., & Zwally, H. J. (2020). Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368(6496), 1239-1242. DOI:10.1126/science.aaz5845
    Steigenberger, P., & Montenbruck, O. (2017). Galileo status: orbits, clocks, and positioning. GPS solutions, 21(2), 319-331. DOI:10.1007/s10291-016-0566-5
    Strandberg, J., Hobiger, T., & Haas, R. (2016). Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Science, 51(8), 1286-1296. DOI:10.1002/2016RS006057
    Strandberg, J., Hobiger, T., & Haas, R. (2017). Coastal sea ice detection using ground-based GNSS-R. IEEE Geoscience and Remote Sensing Letters, 14(9), 1552-1556. DOI:10.1109/LGRS.2017.2722041
    Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS solutions, 23(3), 61. DOI:10.1007/s10291-019-0851-1
    Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., & Barrett, A. P. (2012). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110, 1005-1027. DOI:10.1007/s10584-011-0101-1
    Sun, J. (2017). Ground-based GNSS-Reflectometry Sea Level and Lake Ice Thickness Measurements, Doctoral dissertation, The Ohio State University.
    Tabibi, S., Geremia-Nievinski, F., & van Dam, T. (2017). Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3773-3785. DOI:10.1109/TGRS.2017.2679899
    Tabibi, S., Geremia-Nievinski, F., Francis, O., & van Dam, T. (2020). Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland. Remote Sensing of Environment, 248, 111959. DOI:10.1016/j.rse.2020.111959
    Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., & Velicogna, I. (2019). Contributions of GRACE to understanding climate change. Nature Climate Change, 9(5), 358-369. DOI:10.1038/s41558-019-0456-2
    Tétreault, P., Kouba, J., Héroux, P., & Legree, P. (2005). CSRS-PPP: an internet service for GPS user access to the Canadian Spatial Reference Frame. Geomatica, 59(1), 17-28. DOI:10.5623/geomat-2005-0004
    Teunissen, P. J., & Montenbruck, O. (Eds.). (2017). Springer Handbook of Global Navigation Satellite Systems. Springer Cham.
    The IMBIE team. (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222. DOI:10.1038/s41586-018-0179-y
    Tseng, Y. H., Breaker, L. C., & Chang, E. T. Y. (2010). Sea level variations in the regional seas around Taiwan. Journal of Oceanography, 66(1), 27-39. DOI:10.1007/s10872-010-0003-2
    Turner, J. F., Iliffe, J. C., Ziebart, M. K., & Jones, C. (2013). Global ocean tide models: assessment and use within a surface model of lowest astronomical tide. Marine Geodesy, 36(2), 123-137. DOI:10.1080/01490419.2013.771717
    Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4), 95-126. DOI:10.1016/0167-2789(92)90103-T.
    Vergani, A. A., & Binaghi, E. (2018, July). A soft davies-bouldin separation measure. In 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE), Rio de Janeiro, Brazil, pp. 1-8. DOI:10.1109/FUZZ-IEEE.2018.8491581
    Vignudelli, S., Birol, F., Benveniste, J., Fu, L. L., Picot, N., Raynal, M., & Roinard, H. (2019). Satellite altimetry measurements of sea level in the coastal zone. Surveys in Geophysics, 40, 1319-1349. DOI:10.1007/s10712-019-09569-1
    Wang, F., Yang, D., Niu, M., Yang, L., & Zhang, B. (2021). Sea Ice Detection and Measurement Using Coastal GNSS Reflectometry: Analysis and Demonstration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 136-149. DOI:10.1109/JSTARS.2021.3133431
    Wang, X., He, X., & Zhang, Q. (2019). Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sensing of Environment, 231, 111229. DOI:10.1016/j.rse.2019.111229
    Wang, X. L., He, X. F., Song M. F., Chen, S., & Niu, Z. J. (2022). Analysis of inter-frequency bias in multi-mode multi-frequency GNSS-IR water level retrieval and correction method. Acta Geodaetica et Cartographica Sinica, 51(11), 2328.
    Welch G. & Bishop G. (1995). An Introduction to the Kalman Filter. Chapel Hill, NC, USA.
    Wei, H., Yang, X., Pan, Y., & Shen, F. (2023). GNSS-IR soil moisture inversion derived from multi-GNSS and multi-frequency data accounting for vegetation effects. Remote Sensing, 15(22), 5381. DOI:10.3390/rs15225381
    Wigley, T. M., & Raper, S. C. B. (1987). Thermal expansion of sea water associated with global warming. Nature, 330(6144), 127-131. DOI:10.1038/330127a0
    Williams, S. D. P., & Nievinski, F. G. (2017). Tropospheric delays in ground‐based GNSS multipath reflectometry—Experimental evidence from coastal sites. Journal of Geophysical Research: Solid Earth, 122(3), 2310-2327. DOI:10.1002/2016JB013612
    Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M., & Haigh, I. (2016). Towards a global higher‐frequency sea level dataset. Geoscience Data Journal, 3(2), 50-59. DOI:10.1002/gdj3.42
    Woodworth, P. L., Wöppelmann, G., Marcos, M., Gravelle, M., & Bingley, R. M. (2017). Why we must tie satellite positioning to tide gauge data. Eos, 98(4), 13-15. DOI:10.1029/2017EO064037.
    Wöppelmann, G., Pouvreau, N., Coulomb, A., Simon, B., & Woodworth, P. L. (2008). Tide gauge datum continuity at Brest since 1711: France's longest sea‐level record. Geophysical Research Letters, 35(22). DOI:10.1029/2008GL035783
    Wöppelmann, G., Letetrel, C., Santamaria, A., Bouin, M. N., Collilieux, X., Altamimi, Z., Williams, S. D. P., & Miguez, B. M. (2009). Rates of sea‐level change over the past century in a geocentric reference frame. Geophysical Research Letters, 36(12). DOI:10.1029/2009GL038720
    Wöppelmann, G., & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), 64-92. DOI:10.1002/2015RG000502
    Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., & Lichten, S. M. (1993). Effects of antenna orientation on GPS carrier phase. Manuscripta geodaetica, 18(2), 91-98. DOI:10.1007/BF03655303
    Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1-41. DOI:10.1142/S1793536909000047.
    Wunsch, C., & Stammer, D. (1997). Atmospheric loading and the oceanic “inverted barometer” effect. Reviews of Geophysics, 35(1), 79-107. DOI:10.1029/96RG03037
    Xu, G. (2007). GPS-Theory, Algorithms and Applications. Springer Berlin, Heidelberg.
    Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., Van Den Broeke, M. R., Ribergaard, M. H., & Mortensen, J. (2016). Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Communications, 7(1), 1-8. DOI:10.1038/ncomms10525
    Yang, Y., Gao, W., Guo, S., Mao, Y., & Yang, Y. (2019). Introduction to BeiDou‐3 navigation satellite system. Navigation, 66(1), 7-18. DOI:10.1002/navi.291
    Yang, Y., Mao, Y., & Sun, B. (2020). Basic performance and future developments of BeiDou global navigation satellite system. Satellite Navigation, 1(1), 1. DOI:10.1186/s43020-019-0006-0
    Ye, M., Jin, S., & Jia, Y. (2022). Ten-Minute Sea-Level Variations From Combined Multi-GNSS Multipath Reflectometry Based on a Weighted Iterative Least-Square Method. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. DOI:10.1109/TGRS.2022.3194033.
    Yu, Y. C., Chen, H., Shih, H. J., Chang, C. H., Hsiao, S. C., Chen, W. B., Chen, Y. M., Su, W. R., & Lin, L. Y. (2019). Assessing the potential highest storm tide hazard in Taiwan based on 40-year historical typhoon surge hindcasting. Atmosphere, 10(6), 346. DOI:10.3390/atmos10060346
    Zavorotny, V. U., & Voronovich, A. G. (2000). Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 951-964. DOI:10.1109/36.841977
    Zavorotny, V. U., Gleason, S., Cardellach, E., & Camps, A. (2014). Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geoscience and Remote Sensing Magazine, 2(4), 8-45. DOI:10.1109/MGRS.2014.2374220
    Zhang, S., Liu, K., Liu, Q., Zhang, C., Zhang, Q., & Nan, Y. (2019). Tide variation monitoring based improved GNSS-MR by empirical mode decomposition. Advances in Space Research, 63(10), 3333-3345. DOI:10.1016/j.asr.2019.01.046
    Zhigljavsky, A. A. (2010). Singular spectrum analysis for time series: Introduction to this special issue. Statistics and its Interface, 3(3), 255-258.
    Zimmermann, F., Schmitz, B., Klingbeil, L., & Kuhlmann, H. (2018). GPS multipath analysis using fresnel zones. Sensors, 19(1), 25. DOI:10.3390/s19010025
    Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A., Brenner, A. C., Saba, J. L., & Yi, D. (2005). Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. Journal of Glaciology, 51(175), 509-527. DOI:10.3189/172756505781829007

    無法下載圖示 校內:2030-06-09公開
    校外:2030-06-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE