| 研究生: |
呂季謙 Lu, Chi-Chien |
|---|---|
| 論文名稱: |
Willmore 猜想 The Willmore Conjecture |
| 指導教授: |
劉珈銘
Liou, Jia-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | 高斯曲率 、平均曲率 、高斯-博內定理 、Willmore 猜想 |
| 外文關鍵詞: | Gaussian curvature, mean curvature, Gauss-Bonnet theorem, Willmore Conjecture |
| 相關次數: | 點閱:202 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在古典微分幾何裡,我們藉由高斯曲率和平均曲率來分類3維歐式空間裡的曲面。根據高斯-博內定理,我們知道高斯曲率的曲面積分是一個拓撲不變量。因此我們會好奇平均曲率的曲面積分是否也會有類似的結果。在1965年,Willmore提出相關的猜想。這篇論文主要目的是驗證Willmore 猜想在其中的一個主曲率是常數的曲面下是成立的。
In classical differential geometry, we use the Gaussian curvature and the mean curvature to classify surfaces in Euclidean 3-space. According to the Gauss-Bonnet theorem, we know that the surface integral of the Gaussian curvature is a topological invariant. It is an interesting problem whether the surface integral of the mean curvature has a similar result. In 1965, Willmore proposed related conjecture. The main purpose of this paper is to verify that Willmore Conjecture holds in the case of a surface with a constant principal curvature.
[1] Thomas J Willmore. Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza”Iasi
Sect. I a Mat.(NS) B, 11(493-496):18, 1965.
[2] Fernando C Marques and André Neves. Min-max theory and the willmore conjecture. Annals of mathematics, pages 683–782, 2014.
[3] Katsuhiro Shiohama and Ryoichi Takagi. A characterization of a standard torus in e^3. Journal of Differential Geometry, 4(4):477–485, 1970.
[4] William S Massey. Surfaces of gaussian curvature zero in euclidean 3-space. Tohoku Mathematical Journal, Second Series, 14(1):73–79, 1962.
[5] Barrett O'neill. Elementary differential geometry. Elsevier, 2006.
[6] M Lee John. Introduction to smooth manifolds. Graduate Texts in Mathematics, 218, 2003.
[7] Andrew N Pressley. Elementary differential geometry. Springer Science & Business
Media, 2010.
[8] John W Milnor. On the total curvature of knots. Annals of Mathematics, pages
248–257, 1950.