簡易檢索 / 詳目顯示

研究生: 呂季謙
Lu, Chi-Chien
論文名稱: Willmore 猜想
The Willmore Conjecture
指導教授: 劉珈銘
Liou, Jia-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 22
中文關鍵詞: 高斯曲率平均曲率高斯-博內定理Willmore 猜想
外文關鍵詞: Gaussian curvature, mean curvature, Gauss-Bonnet theorem, Willmore Conjecture
相關次數: 點閱:202下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在古典微分幾何裡,我們藉由高斯曲率和平均曲率來分類3維歐式空間裡的曲面。根據高斯-博內定理,我們知道高斯曲率的曲面積分是一個拓撲不變量。因此我們會好奇平均曲率的曲面積分是否也會有類似的結果。在1965年,Willmore提出相關的猜想。這篇論文主要目的是驗證Willmore 猜想在其中的一個主曲率是常數的曲面下是成立的。

    In classical differential geometry, we use the Gaussian curvature and the mean curvature to classify surfaces in Euclidean 3-space. According to the Gauss-Bonnet theorem, we know that the surface integral of the Gaussian curvature is a topological invariant. It is an interesting problem whether the surface integral of the mean curvature has a similar result. In 1965, Willmore proposed related conjecture. The main purpose of this paper is to verify that Willmore Conjecture holds in the case of a surface with a constant principal curvature.

    1 Introduction 1 2 Definitions and Notation 3 3 The classification of all surfaces in R^3 with one constant principal curvature 5 4 Proof of the Willmore Conjecture in a special case 14 References 22

    [1] Thomas J Willmore. Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza”Iasi
    Sect. I a Mat.(NS) B, 11(493-496):18, 1965.
    [2] Fernando C Marques and André Neves. Min-max theory and the willmore conjecture. Annals of mathematics, pages 683–782, 2014.
    [3] Katsuhiro Shiohama and Ryoichi Takagi. A characterization of a standard torus in e^3. Journal of Differential Geometry, 4(4):477–485, 1970.
    [4] William S Massey. Surfaces of gaussian curvature zero in euclidean 3-space. Tohoku Mathematical Journal, Second Series, 14(1):73–79, 1962.
    [5] Barrett O'neill. Elementary differential geometry. Elsevier, 2006.
    [6] M Lee John. Introduction to smooth manifolds. Graduate Texts in Mathematics, 218, 2003.
    [7] Andrew N Pressley. Elementary differential geometry. Springer Science & Business
    Media, 2010.
    [8] John W Milnor. On the total curvature of knots. Annals of Mathematics, pages
    248–257, 1950.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE