簡易檢索 / 詳目顯示

研究生: 吳明勳
Wu, Ming-Xun
論文名稱: 添加銀或鎢對氮化鉻薄膜磨潤性能之影響
The effect of Ag or W doping on the tribological performance of CrN thin films
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: 磨潤性能氮化鉻
外文關鍵詞: CrN.W.Ag
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於具有極佳抗氧化性及抗黏著性,氮化鉻是一個重要保護層材料。然而,由於它硬度比較低所以限制了氮化鉻無法廣泛地使用在工業界應用上。Cr-Ag-N系及Cr-W-N系鍍膜利用封閉式非平衡磁控濺鍍法被覆於矽晶片、高速鋼及微鑽針上;探討不同銀含量及鎢含量對於氮化鉻鍍膜性質之影響。首先以微硬度機、刮痕試驗機、SRV磨耗試驗機及Pin-on-diak試驗機對於鍍膜之基本性質有所了解,再進一步實際利用印刷電路板鑽削來探討其磨潤行為。
    實驗結果顯示:Cr-Ag-N系鍍膜隨著銀含量增加硬度值下降,Cr-W-N系鍍膜添加少量鎢時,硬度值急遽增加。而附著性Cr-Ag-N系改變不大,Cr-W-N系鍍膜隨著鎢含量增加而變差。在SRV磨耗試驗與Pin-on-disk磨耗試驗中,Cr-Ag-N系鍍膜以銀含量11.65at.%鍍膜耐磨性最好,而Cr-W-N系鍍膜則以鎢含量6.85at.%鍍膜最好。耐熱性方面,Cr-Ag-N系鍍膜400℃熱處理硬度值有些許提升,Cr-W-N系鍍膜硬度還是維持高硬度情形,但耐氧化性Cr-Ag-N系鍍膜較Cr-W-N系鍍膜差。
    在PCB鑽削實驗中,Cr-Ag-N系鍍膜以Ag05鍍膜(銀含量11.65at.%)鑽針表現最好,可讓鑽針壽命提升五倍。Cr-W-N系鍍膜以W10鍍膜(鎢含量6.85at.%)鑽針表現最佳,可提升鑽針壽命四倍。在車削試驗結果顯示W10鍍膜(鎢含量6.85At.%)要比Ag05鍍膜(銀含量11.65at.%)較適用於車刀上。

    Due to its excellent oxidation and adhesive resistance, CrN is a prominent material for protective coatings. Still, its comparatively low hardness prevents CrN from being widely used in industrial applications. The Cr-Ag-N coatings and Cr-W-N coatings were deposited on silicon, high speed steel substrates and micron drills by the closed field unbalances magnetron sputtering method. The effects of various tungsten and silver in CrN films were investigated. At first, in order to understand basic properties of the Cr-Ag-N coatings and Cr-W-N coatings, the experiments of micro-hardness tester, scratch tester, SRV apparatus and Pin-on-disk tester were employed. Finally, in field PCB through hole drilling was used to examine the tribological properties of the coated micron drills.
    The experiment results are shown as following:The hardness of Cr-Ag-N coatings decreased with increasing silver contents. The Cr-W-N coatings show a steep increase in hardness with only small addition of tungsten. The adherences of the Cr-Ag-N coatings had no distinct changes, but the adherence of the Cr-W-N coatings become poor with increasing tungsten. Among the SRV tester and Pin-on-disk tester, the wear-resistance of the Cr-Ag-N coatings was the best when silver contents 11.65at.%. When tungsten contents were 6.85at.%, the coating had best tribological performance. In heat-resistance, the hardness of the Cr-Ag-N coatings at temperature of 400℃ had a little increase. The hardness of the Cr-W-N coatings keep high at temperature of 400℃.But the Cr-Ag-N coatings in oxidation resistance was poor when compared with that of the Cr-W-N coatings.
    In the PCB drilling tests, Ag05 of the Cr-Ag-N coatings with 11.65at.% silver contents improved tool life 5 times than uncoated ones. W10 coating with 6.85at.% tungsten contents improved 4 times. In the turning test, W10 coating was more suitable for turning tool than Ag05 coating.

    授權書………………………………………………………………I 考試合格證明………………………………………………………II 摘要…………………………………………………………………III Abstract……………………………………………………………IV 致謝…………………………………………………………………V 總目錄………………………………………………………………VI 表目錄................................................IX 圖目錄………………………………………………………………X 第一章 緒論.......................................1 第二章 理論基礎與文獻回顧.........................2 2-1奈米級陶瓷複合材料.................................2 2-1-1奈米級複合材料之形式.............................2 2-1-2奈米複合材料機械性質之探討.......................3 2-2 CrN的鍍層特色................................ 4 2-3微鑽針.........................................5 2-3-1微鑽針的幾何外形..........................5 2-3-2微鑽針磨耗破壞............................5 第三章 實驗方法與步驟.................................7 3-1實驗目的.......................................7 3-2 實驗流程......................................7 3-3 實驗方法與規劃................................7 3-3-1濺鍍參數與鍍膜安排........................7 3-3-2濺鍍系統與靶材配置........................8 3-3-3鍍膜結構分析..............................8 3-3-4鍍膜成份與元素分析........................8 3-3-5鍍膜性質分析..............................9 3-3-6磨耗試驗..................................10 3-3-7耐熱實驗..................................10 3-3-8 PCB鑽削實驗..............................11 3-3-9車削實驗..................................12 3-4實驗設備.......................................12 第四章 實驗結果與討論............................15 4-1鍍膜基本性質...................................15 4-1-1靶材電流與鍍膜含銀或鎢量之關係............15 4-1-2 Cr-Ag-N系及Cr-W-N系鍍膜硬度值............15 4-1-3附著性....................................16 4-1-4組織結構分析..............................16 4-2 SRV往覆式磨耗試驗.............................17 4-2-1第一部份Cr-Ag-N系鍍膜SRV試驗..............17 4-2-2第二部份Cr-W-N系鍍膜SRV試驗...............17 4-2-3 Cr-Ag-N系和Cr-W-N系鍍膜SRV比較...........18 4-3 Pin-on-disk磨耗試驗...........................18 4-4耐熱試驗.......................................19 4-4-1熱處理前後硬度試驗........................19 4-4-2熱處理前後接觸角試驗......................20 4-4-3 Cr-Ag-N系和Cr-W-N系鍍膜耐熱性比較........20 4-5 鑽削磨耗試驗..................................20 4-5-1 Cr-Ag-N系鍍膜微鑽針磨耗..................21 4-5-2 Cr-W-N系鍍膜微鑽針磨耗...................22 4-5-3 Cr-Ag-N系和Cr-W-N系鍍膜微鑽針耐磨性比較…22 4-6 車削磨耗試驗..................................23 第五章 結論......................................24 第六章 參考文獻.......................................26 自述..................................................80 表目錄 表3-1 Cr-Ag-N系鍍膜濺鍍參數...........................30 表3-2 Cr-W-N系鍍膜濺鍍參數……………………………………30 表3-3 鑽針的機械性質表................................31 表3-4 FR4雙面板之物理機械性質.........................31 表4-1第一部份Cr-Ag-N系鍍膜銀含量與厚度................32 表4-2第二部份Cr-W-N系鍍膜鎢含量與厚度.................32 表4-3第一部份Cr-Ag-N系鍍膜壓痕試驗結果................32 表4-4第二部份Cr-W-N系鍍膜壓痕試驗結果.................32 表4-5第一部份Cr-Ag-N系鍍膜刮痕試驗結果................33 表4-6第二部份Cr-W-N系鍍膜刮痕試驗結果.................33 表4-7 Cr-Ag-N系鍍膜熱處理前後銀含量(EDX分析)..........34 表4-8 Cr-W-N系鍍膜熱處理前後鎢含量(EDX分析)...........34 表4-9 Cr-Ag-N系鍍膜微鑽針刀角磨耗表...................35 表4-10 Cr-Ag-N系鍍膜微鑽針平均刀腹磨耗表..............35 表4-11 Cr-W-N系鍍膜微鑽針刀角磨耗表...................36 表4-12 Cr-W-N系鍍膜微鑽針平均刀腹磨耗表...............36 圖目錄 圖2-1陶瓷基複合材料分類...............................37 圖2-2微鑽針幾何外形...................................38 圖2-3鑽針磨耗型態.....................................39 圖3-1實驗流程圖.......................................40 圖3-2鍍膜安排示意圖...................................41 圖3-3封閉式非平衡磁控濺鍍法配置圖.....................41 圖3-4刮痕試驗機.......................................42 圖3-5壓痕等級示意圖...................................42 圖3-6 SRV往覆式磨耗試驗機配置簡圖.....................43 圖3-7 Pin-on-disk磨耗試驗機示意圖.....................44 圖3-8接觸角試驗機.....................................45 圖3-9液體滴在固體表面之表面張力分析圖.................45 圖3-10 PCB立式三軸工具機..............................46 圖3-11 FR4雙面板的構造組合圖..........................46 圖3-12鑽削實驗配置與鑽削力量量測流程圖................47 圖3-13鑽削路徑與鑽削位置配置圖........................47 圖3-14鑽針磨耗量量測圖................................48 圖3-15車刀磨耗示意圖..................................48 圖4-1 Cr-Ag-N系鍍膜銀靶材電流與銀含量之關係圖(EDX分析)49 圖4-2 Cr-W-N系鍍膜鎢靶材電流值與鎢含量之關係圖(EDX分析)50 圖4-3 Cr-Ag-N系鍍膜於高速鋼基材之維氏硬度.............51 圖4-4 Cr-Ag-N系鍍膜銀成分比與硬度之關係...............51 圖4-5 Cr-W-N系鍍膜於高速鋼基材之維氏硬度..............52 圖4-6 Cr-W-N系鍍膜鎢成分比與硬度之關係................52 圖4-7氮化鉻鍍膜之斷面形貌.............................53 圖4-8氮化鉻添加銀之後斷面型態(Ag10鍍膜)...............53 圖4-9 Cr-Ag-N系鍍膜TF-XRD分析結果.....................54 圖4-10 Cr-W-N系鍍膜TF-XRD分析結果.....................55 圖4-11 Cr-Ag-N系鍍膜於高速鋼基材之SRV線接觸磨耗試驗結果56 圖4-12 Cr-Ag-N系鍍膜於高速鋼基材之SRV點接觸磨耗試驗結果56 圖4-13 Cr-Ag-N系鍍膜於高速鋼基材之SRV點接觸磨耗試驗結果57 圖4-14 Cr-W-N系鍍膜於高速鋼基材之SRV線接觸磨耗試驗結果.57 圖4-15 Cr-W-N系鍍膜於高速鋼基材之SRV點接觸磨耗試驗結果.58 圖4-16 Cr-W-N系鍍膜於高速鋼基材之SRV點接觸磨耗試驗結...58 圖4-17 CrN與W10線磨上試件磨痕..........................59 圖4-18鍍膜於高速鋼基材之SRV線接觸磨耗試驗比較..........60 圖4-19鍍膜於高速鋼基材之SRV點接觸磨耗試驗比較(90sec)...60 圖4-20鍍膜於高速鋼基材之SRV點接觸磨耗試驗比較(6min)....61 圖4-21 Cr-Ag-N系鍍膜於高速鋼基材之Pin-on-disk磨耗試驗結果61 圖4-22 Cr-W-N系鍍膜於高速鋼基材之Pin-on-disk磨耗試驗結果.62 圖4-23鍍膜於高速鋼基材之Pin-on-disk結果比較..............62 圖4-24 Cr-Ag-N系鍍膜於矽晶片基材經熱處理後維氏硬度比較...63 圖4-25 Cr-W-N系鍍膜於矽晶片基材經熱處理後維氏硬度比較....63 圖4-26 Cr-Ag-N系鍍膜經400℃熱處理後TF-XRD分析結果........64 圖4-27 Cr-W-N系鍍膜經400℃熱處理後TF-XRD分析結果.........65 圖4-28鍍膜未熱處理前GDS結果..............................66 圖4-29鍍膜經400℃熱處理後GDS結果.........................67 圖4-30鍍膜經600℃熱處理後GDS結果.........................68 圖4-31 Cr-Ag-N系鍍膜於不鏽鋼片基材經熱處理後接觸角變化情形 .........................................................69 圖4-32 Cr-W-N系鍍膜於不鏽鋼片基材經熱處理後接觸角變化情形 .........................................................69 圖4-33 Cr-Ag-N系鍍膜微鑽針刀角磨耗量趨勢圖...............70 圖4-34 Cr-Ag-N鍍膜微鑽針平均刀腹磨耗量趨勢圖.............70 圖4-35 Cr-W-N系鍍膜微鑽針刀角磨耗量趨勢圖................71 圖3-36 Cr-W-N系鍍膜微鑽針平均刀腹磨耗量趨勢圖............71 圖3-37 Cr-Ag-N系鍍膜微鑽針鑽針磨耗SEM圖..................72 圖4-38 Cr-Ag-N系鍍膜微鑽針10000孔微孔OM圖................73 圖4-39 Cr-Ag-N系鍍膜微鑽針20000孔微孔OM圖................74 圖4-40 Cr-W-N系鍍膜微讚針鑽針磨耗SEM圖...................75 圖4-41 Cr-W-N系鍍膜微鑽針10000孔微孔OM圖.................76 圖4-42 Cr-W-N系鍍膜微鑽針20000孔微孔OM圖.................77 圖4-43鍍膜應用於微鑽針之切削力與磨耗量關係比較...........78 圖4-44鍍膜應用於車削試驗結果.............................78 圖4-45車刀第二道刀腹磨耗SEM圖............................79

    1. R. Feynman, “There's plenty of room at the bottom”, a talk at the annual meeting of the American Physical Society (Caltech, 1959).
    2. H. Gleiter, “On the structure of grain boundaries in metals”, Mater. Sci. Eng. 52, 91 (1982).
    3. C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, and L.D. Zhang, “Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels”, J. Appl. Phys. 83, 4398 (1998).
    4. C. Fan, C. Li, and A. Inoue, “Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys”, Phys. Rev. B 61, R3761 (2001).
    5. C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature”, Appl. Phys. Lett. 77, 46 (2000).
    6. L.Q. Xing, C. Bertrand, J.P. Dallas, and M. Cornet, “Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni18Ti5 alloy and its mechanical properties”, Mat. Sci. Eng. A241, 216 (1998).
    7. W.D. Sproul, “New routes in the preparation of mechanically hard films”, Science 273, 889 (1996).
    8. W. Clegg, New Way to Make Tough Ceramics, Interceram, Vol.40 No.6 (1991).
    9. K. Niihara, “New Design Concept of Structural Ceramics-Ceramic Nanocomposite”, J. Ceram. Soc. Jpn., 99[10] 974-82 (1991).
    10. M. Nawa, T.Sekino, Knniihara, “Microstructure and Mechanical Properties of Al2O3-Mo Nanocomposites”, J. Jpn Soc. of powd. And Powd. Metal. , 39, 1104-1108 (1992).
    11. L.C. Stearns, J. Zhao, and M.P. Harmer, “Processing and Microstructure Development in Al2O3-SiC Nano Composites”, J. Euro. Ceram. Soc., 10, 473-477 (1992).
    12. 黃啟祥、林江財, 陶瓷技術手冊(下) ,1994。
    13. J. Musil, J. Vlcek, “Magnetron sputtering of hard nanocomposite coatings and their properties”, Surface and Coatings Technology, Vol. 142-144,2001,pp.557-566.
    14. P. Holubar, M. Jilek, M. Sima, “Present and possible future applications of superhard nanocomposite coatings”, Surface and Coatings Technology, Vol. 133-134, 2000, pp.145-151.
    15. N.J. Petch, “Cleavage Strength of Polycrystals”, J. Iron and Steel Inst. (London), 174 [1] 25-28 (1953).
    16. P. Hones, R. Sanjines, F. Levy, “Sputter deposited chromium nitride based ternary compounds for hard coatings”, Thin Solid Films, Vol. 332, 1998, pp.240-246.
    17. P. Karvankova, H.-D. Mannling, C. Eggs, S. Veprek, “Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings”, Surface and Coatings Technology,Vol.146-147,2001,pp.280-285.
    18. J. Musil, H. Hruby, P. Zeman, H. Zeman, R. Cerstvy, P.H. Mayrhofer, C. Mitterer, “Hard and superhard nanocomposite Al-Cu-N films prepared by magnetron sputtering”,Surface and Coatings, Vol.142-144, 2001, pp.603-609.
    19. F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, J.C. Soares, “The effect of the addition of Al and Si on the physical and mechanical properties of titanium nitride”, Journal of Materials Processing Technology, Vol.92-93, 1999, pp.169-176.
    20.張立德,“奈米材料與奈米結構”,滄海書局,2002。
    21.C. Nouveau, M.A. Djouadi, C. Deces-Petit, P. Beer, M. Lambertin, “Influence of CrxNy coatings deposited by magnetron sputtering on tool service life in wood processing”, Surface and Coatings Technology, Vol.142-144, 2001, pp.94-101.
    22.T. Hurkmans, D. B. Lewis, J. S. Brooks, W. D. Munz,“Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABSTM) deposition techniques”, Surface and Coatings Technology, Vol.86-87, 1996, pp.192-199.
    23.C.Nouveau, M.A. Djouadi, “Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering”, Thin Solid Films,Vol.398-399,2001,pp.490-495.
    24. Fu-Hsing Lu, Hong-Yinh Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films, Vol.398-399, 2001, pp.368-373.
    25. 李國維,“碳化鎢模具經物理蒸鍍氮化鉻鍍膜對其磨耗特性影響之研究”, 國立高雄第一科技大學 , 中華民國90年。
    26.M.A. Djouadi, C. Nouveau, P. Beer, M. Lambertin, “CrxNy hard coatings deposited with PVD method on tools for wood maching”, Surface and Coatings Technology, Vol.133-134, 2000, pp.478-483.
    27.陳弘穎、呂福興,“氮化鉻鍍膜於高溫真空下的相變化”,國立中興大學材料工程學系。
    28.楊志豪,“以非平衡磁控法濺鍍CrN鍍膜性質之研究”,國立成功大學材料科學及工程研究所,中華民國87年。
    29.T. Arai , H. Fujita , M. Watanabe, “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films, 154 (1987) 391.
    30.G. Wei, T.W. Scharf, J.N. Zhou, F. Huang, M.L. Weaver, J.A. Barnard, “Nanotribology studies of Cr, Cr2N and CrN thin films using constant and ramped load nanoscratch techniques”, Surface and Coatings Technology, Vol.146-147, 2001, pp.357-362.
    31.C.Rebholz, H. Ziegele, A. Leyland, A.Matthews, “Structure,mechanical and tribological properties of nitrogen-coatings prepared by reactive magnetron sputtering”, Surface and Coatings Technology, Vol. 115 , 1999 , pp.222-229.
    32.伍秀菁、汪若文、林美吟,“真空技術”,國科會精儀中心,中華民國90年。
    33.F. Bodart, T. Briglia, C. Quaeyhaegens, J. Dhaen and L.M. Stals,“Investigation of nitride phases in stainless steels by nuclear reaction analysis and X-ray diffraction”, Surface and Coating Technology, Vol. 65,1994, pp.1112.
    34.N. Nordin, M. Larsson, S. Hogmark,“Mechanical and Tribological properties of multilayered PVD TiN/CrN,TiN/MoN,TiN/NbN and TiN/TaN coatings cemented carbide”, Surface and Coating Technology,Vol. 106,1998, pp.234.
    35.Y. Sun and T. Bell,“Plasma surface engineering of low alloy steel”,Materials Science and Engineering,Vol.140,1991, pp.419.
    36. H. Scheerer, H. Hoche, E. Broszeit, C. Berger, ”Tribological properties of sputtered CrN coatings under dry sliding oscillation motion at elevated temperatures”, Surface and Coatings Technology, Vol.142-144, 2001, pp.1017-1022.
    37.J. Vetter, R. Knaup, H. Dwuletzki, E. Schneidra, S.Vogler,“Hard coatings for lubrication reduction in metal forming”,Surface and Coatings Technology , Vol.86/87, 1996, pp.739.

    下載圖示 校內:2004-06-30公開
    校外:2004-06-30公開
    QR CODE