簡易檢索 / 詳目顯示

研究生: 曹峻嘉
Tsao, Chun-Chia
論文名稱: 運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作
Implementation of Iterative Learning Control for Torque Ripple Minimization of Permanent Magnet Synchronous Machines
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 永磁同步馬達轉矩漣波疊代學習控制器
外文關鍵詞: Permanent magnet synchronous machines(PMSM), Torque ripple, Iterative learning control
相關次數: 點閱:111下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 永磁同步馬達具高效率、高功率密度、低噪音、壽命長及較其它種類交流馬達容易控制等優點,目前已成為最受矚目的應用馬達。然而由於先天的結構因素,其輸出轉矩包含了週期性交變的漣波成分,而轉矩漣波會造成系統產生振動與噪音,進而限制了永磁同步馬達的應用場合。

    本研究分析永磁同步馬達轉矩漣波的成因與其對應的諧波轉矩,並提出基於磁場導向控制架構下,以外插(Plug-in)的疊代學習控制器抑制馬達轉矩漣波成分。此外,考量永磁同步馬達轉矩漣波為位置週期訊號,本研究提出以位置週期為疊代學習控制器設計依據。並由實驗結果驗證於傳統磁場導向控制架構中,外插一疊代學習控制器確實能有效降低永磁同步馬達輸出轉矩的漣波成分,且相較於傳統基於時間週期的疊代學習控制器,以轉子位置為依據的疊代學習控制器可自主適應各種速度命令下的轉速環境,自行達到轉矩漣波抑制的控制效果,因此適用性更佳

    Permanent magnet synchronous machines (PMSMs) are featured by high efficiency, high power density, low noise, long life span, easier control than the other types of AC motors, etc., which leads PMSM to the most attentive AC motor. However, due to the structure and the inherent errors of the sensors used in control system, the output torque contains periodic ripple. Such torque ripple would cause vibration and noise to the system and further constrain the applications of PMSMs.

    In this paper, the causes of the PMSM torque ripple and the corresponding harmonic torque are analyzed. Moreover, basing on the mainstream field oriented control structure, the plug-in type iterative learning control system is developed to minimize torque ripples. In the case, torque ripple of PMSMs are periodic signals, whose period is defined in position domain. The implementation and experiment of the plug-in type iterative learning control system are verified to efficiently minimize the torque ripples. Moreover, comparing to traditional time-periodic iterative learning control system, the iterative learning control system whose period is defined in rotor position can even more effectively reduce the torque ripples.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 永磁同步馬達概述 4 2.1 永磁同步馬達簡介 4 2.2 永磁同步馬達數學模型 6 2.2.1 定子三相座標系下之數學模型 6 2.2.2 座標轉換 9 2.2.3 轉子同步旋轉座標系之數學模型 11 2.3 永磁同步馬達驅動方式 12 2.4 永磁同步馬達控制方式 14 2.4.1 電壓空間向量與空間向量脈波寬度調變 15 2.4.2 多迴路串聯式控制架構 22 2.4.3 磁場導向控制法 22 第三章 轉矩漣波分析與抑制方法 26 3.1 頓轉扭矩簡介 26 3.2 反電動勢高次諧波 28 3.3 電流感測誤差 30 3.3.1 直流偏壓造成的轉矩漣波 30 3.3.2 比例誤差造成的轉矩漣波 32 3.4 轉矩漣波抑制方法 33 第四章 疊代學習控制 38 4.1 疊代學習控制簡介 38 4.2 系統表示式 39 4.3 穩定度分析 43 4.4 疊代學習控制器設計 44 4.5 時間週期與位置週期疊代學習控制器實現方式 45 4.5.1 時間週期疊代學習控制器實現方式 45 4.5.2 位置週期疊代學習控制器實現方式 46 第五章 系統架構與實驗結果討論 50 5.1 系統硬體架構 50 5.1.1 驅動控制器 51 5.1.2 永磁同步馬達 52 5.1.3 動力量測平台 54 5.2 控制架構與控制參數設計 55 5.3 實驗結果與討論 57 第六章 結論與未來研究建議 73 6.1 結論 73 6.2 未來研究建議 73 參考文獻 75 自述 82

    [1]孫清華,最新直流無刷馬達,全華科技圖書有限公司,2001。
    [2]D. Y. Ohm, "Dynamic Model of PM Synchronous Motors," Drivetech, Inc., Blacksburg, Virginia, 2000.
    [3]M. P. Kazmierkowski, L.G. Franquelo, J. Rodriguez, M.A. Perez, J.I. Leon, "High-Performance Motor Drives," Industrial Electronics Magazine, IEEE , vol.5, no.3, pp.6,26, Sept. 2011.
    [4]曾仁志,無感測驅動系統於薄型馬達之設計與實現,碩士論文,國立成功大學機械工程學系,2007
    [5]M. Depenbrock, "Direct Self-Control (DSC) of Inverter-Fed Induction Machine,"Power Electronics, IEEE Transactions on, vol.3, no.4, pp.420,429, Oct 1988
    [6]I. Takahashi and T. Noguchi, "A New Quick-Response and High Efficiency Control Strategy of an Induction Machine," Industrial Application, IEEE Transactions on, vol. 22, pp. 820–827, Sep./Oct. 1986.
    [7]M. S. Merzoung and F. Naceri, "Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor," World Academy of Scinece, Engineering and Technology 21, 2008.
    [8]F. Blaschke, "A New Method for the Structural Decoupling of A.C. Induction Machines," in Conference Record IFAC, Duesseldorf, Germany, Oct. 1971,pp. 1–15.
    [9]劉子瑜,基於弦波電流驅動於永磁同步馬達電流迴路控制之研究,碩士論文,國立成功大學電機系,2009
    [10]申秉弘,永磁無刷馬達新型無轉軸偵測器定位控制與其應用,碩士論 文,國立成功大學機械工程系,2002

    [11]C. Studer, A. Keyhani, T. Sebastian and S.K. Murthy, "Study of Cogging Torque in Permanent Magnet Machines," Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Conference Record of the 1997 IEEE , vol.1, no., pp.42,49 vol.1, 5-9 Oct 1997
    [12]C. C. Hwang, S. B. John, and S. S. Wu, "Reduction of Cogging Torque in Spindle Motors," Magnetics, IEEE Transactions on , vol. 34, no. 2, pp. 468–470,Mar. 1998.
    [13]Z. Q. Zhu and D. Howe, "Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines," Energy Conversion, IEEE Transactions on, vol. 15, no. 4, pp. 407–412, 2000.
    [14]B. Ackermann, J. H. Janssen, R. Sottek and R. I. Van Steen, "New Technique for Reducing Cogging Torque in a Class of Brushless DC Motors," Electric Power Applications, IEE Proceedings B , vol.139, no.4, pp.315,320, Jul 1992
    [15]Y. Yang, X. Wang, R. Zhang, T. Ding and R. Tang, "The Optimization of Pole Arc Coefficient to Reduce Cogging Torque in Surface-Mounted Permanent Magnet Motors," Magnetics, IEEE Transactions on , vol.42, no.4, pp.1135,1138, April 2006
    [16]Z.Q. Zhu and D. Howe, "Analytical Prediction of the Cogging Torque in Radial-Field Permanent Magnet Brushless Motors," Magnetics, IEEE Transactions on , vol.28, no.2, pp.1371,1374, Mar 1992
    doi: 10.1109/20.123947
    [17]C. K. Kang and I. J. Ha, "An Efficient Torque Control Algorithm for BLDCM with a General Shape of Back EMF," Power Electronics Specialists Conference, 1993. PESC '93 Record., 24th Annual IEEE , vol., no., pp.451,457, 20-24 Jun 1993
    [18]J. Y. Hung and Z. Ding, "Design of Currents to Reduce Torque Ripple in Brushless Permanent Magnet Motors," Electric Power Applications, IEE Proceedings B , vol.140, no.4, pp.260,266, Jul 1993
    [19]D.C. Hanselman, "Minimum Torque Ripple, Maximum Efficiency Excitation of Brushless Permanent Magnet Motors," Industrial Electronics, IEEE Transactions on , vol.41, no.3, pp.292,300, Jun 1994
    [20]ACS711, Datasheet, Allegro MicroSystems, Inc.
    [21]H. S. Jung; S. H. Hwang, J. M. Kim, C.U. Kim and C. Choi, "Diminution of Current-Measurement Error for Vector-Controlled AC Motor Drives," Industry Applications, IEEE Transactions on , vol.42, no.5, pp.1249,1256, Sept.-Oct. 2006
    [22]D.W. Chung and S. K. Sul, "Analysis and Compensation of Current Measurement Error in Vector-Controlled AC Motor Drives," Industry Applications, IEEE Transactions on , vol.34, no.2, pp.340,345, Mar/Apr 1998
    [23]A. N'diaye, C. Espanet, A. Miraoui, "Reduction of the Torque Ripples in Brushless PM Motors by Optimization of the Supply - Theoretical Method and Experimental Implementation," Industrial Electronics, 2004 IEEE International Symposium on , vol.2, no., pp.1345,1350 vol. 2, 4-7 May 2004
    [24]Z. Q. Zhu, J. H. Leong and X. Liu, "Control of Stator Torsional Vibration in PM Brushless AC Drives Due to Non-Sinusoidal Back-EMF and Cogging Torque by Improved Direct Torque Control," Electrical Machines and Systems, 2011 International Conference on , vol., no., pp.1,6, 20-23 Aug. 2011
    [25]S. Tinghsu, S. Hattori, M. Ishida and T. Hori, "Suppression Control Method for Torque Vibration of AC Motor Utilizing Repetitive Controller with Fourier transform," Industry Applications, IEEE Transactions on , vol.38, no.5, pp.1316,1325, Sep/Oct 2002
    [26]Q. Weizhe, S.K. Panda, and J. X. Xu, "Torque Ripple Minimization in PM Synchronous Motors Using Iterative Learning Control," Power Electronics, IEEE Transactions on , vol.19, no.2, pp.272,279, Mar. 2004
    [27]N. Matsui, T. Makino and H. Satoh, "Autocompensation of Torque Ripple of Direct Drive Motor by Torque Observer," Industry Applications, IEEE Transactions on , vol.29, no.1, pp.187,194, Jan/Feb 1993
    [28]Y. A. –R. I. Mohamed, "Design and Implementation of a Robust Current-Control Scheme for a PMSM Vector Drive With a Simple Adaptive Disturbance Observer," Industrial Electronics, IEEE Transactions on , vol.54, no.4, pp.1981,1988, Aug. 2007
    [29]H. Watanabe and N. Kasa, "A Torque Ripples Compensating Technique Based on Disturbance Observer with Wavelet Transform for Sensorless Induction Motor Drives," Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE , vol.2, no., pp.580,585 vol.2, 31 Aug-4 Sep 1998
    [30]D. Xu and Y. Gao, "An approach to torque ripple compensation for high performance PMSM servo system," Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual , vol.5, no., pp.3256,3259 Vol.5, 20-25 June 2004
    [31]S.O. Bogosyan and M. Gokasan, "Adaptive Torque Ripple Minimization of Permanent Magnet Synchronous Motors for Direct Drive Applications," Industry Applications, Conference Record of the 1995 IEEE , vol.1, no., pp.231,237 vol.1, 8-12 Oct 1995
    [32]W. C. Gan; L. Qiu, "Torque and Velocity Ripple Elimination of AC Permanent Magnet Motor Control Systems Using the Internal Model Principle," Mechatronics, IEEE/ASME Transactions on , vol.9, no.2, pp.436,447, June 2004
    [33]M.N. Uddin, "An Adaptive-Filter-Based Torque-Ripple Minimization of a Fuzzy-Logic Controller for Speed Control of IPM Motor Drives," Industry Applications, IEEE Transactions on , vol.47, no.1, pp.350,358, Jan.-Feb. 2011
    [34] M. Garden, "Learning Control of Actuators in Control Systems," United State Patent, No. 3,555,252, 1967.
    [35] M. UCHIYAMA, "Formulation of High-Speed Motion Pattern of a Mechanical Arm by Trial." Transactions of the Society for Instrumentation and Control Engineers, 14, 706- 712, 1978.
    [36]S. Arimoto, S. Kawamura and F. Miyazaki, "Bettering Operation of Dynamic Systems by Learning: A new Control Theory for Servomechanism or Mechatronics Systems," Decision and Control, 1984. The 23rd IEEE Conference on , vol.23, no., pp.1064,1069, Dec. 1984
    [37]K. J. Hunt , D. Sbarbaro , R. Zbikowski and P. J. Gawthrop, "Neural Networks for Control Systems: A survey", Automatica, vol. 28, no. 6, pp.1083 -1112 1992
    [38]R. W. Longman "Iterative Learning Control and Repetitive Control for Engineering Practice", International Journal of Control, vol. 73, no. 10, pp.930 -954 2000
    [39]H. S. Ahn, Y. Q. Chen and H. Dou, "State-Periodic Adaptive Compensation of Cogging and Coulomb Friction in Permanent-Magnet Linear Motors," Magnetics, IEEE Transactions on , vol.41, no.1, pp.90-98, Jan. 2005
    [40]S. Hara, Y. Yamamoto, T. Omata and Michio, Nakano, "Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals," Automatic Control, IEEE Transactions on, vol.33, no.7, pp.659-668, Jul. 1988

    [41]D.A. Bristow, M. Tharayil, and A.G. Alleyne, "A Survey of Iterative Learning Control," Control Systems, IEEE , vol.26, no.3, pp.96,114, June 2006
    [42]Z. Bien and J. X. Xu, Iterative Learning Control: Analysis, Design, Integration and Applications, Kluwer, 1998.
    [43]C. T. Chen, Linear System Theory and Design, Oxford, New York, 1999.
    [44]W. J. Rugh, Linear System Theory, Prentice Hall , 1996.
    [45]R. Horowitz , "Learning Control of Robot Manipulators", Journal of Dynamic System, Measure and Control, ASME Transactions on , vol. 115, no. 2B, pp.402 -411 1993
    [46]S. S. Saab, "Stochastic P-type/D-type Iterative Learning Control Algorithms", International Journal of Control, vol. 76, no. 2, pp.139 -148 2003
    [47]D. Wang, "On D-type and P-type ILC Designs and Anticipatory Approach", International Journal of Control, vol. 73, no. 10, pp.890 -901 2000
    [48]T. Sogo, "Stable Inversion for Nonminimum Phase Sampled-Data Systems and its Relation with the Continuous-Time Counterpart", Proc. 41st IEEE Conference Decision Control, pp.3730 -3735 2002
    [49]J. Ghosh and B. Paden, "Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants with Disturbances", Proc. 38th IEEE Conference Decision Control, pp.5206 -5212 1999
    [50]D. de Roover, "Synthesis of a Robust Iterative Learning Controller Using an H-Infinity Approach", Proc. 35th IEEE Conference Decision Control, pp.3044 -3049 1996
    [51]T. Y. Doh , J. H. Moon , K. B. Jin and M. J. Chung, "Robust Iterative Learning Control with Current Feedback for Uncertain Linear Systems", International Journal of System Science, vol. 30, no.1, pp.39 -47 1999
    [52]N. Amarin , D. H. Owens and E. Rogers, "Iterative Learning Control for Discrete-Time Systems with Exponential Rate of Convergence", IEE Proceeding.: Control Theory Application., vol. 143, no. 2, pp.217 -224 1996
    [53]S. Gunnarsson and M. Norrlof, "On the Design of ILC Algorithms Using Optimization", Automatica, vol. 37, no. 12, pp.2011 -2016 2001
    [54]M. Norrlof and S. Gunnarsson, "Time and Frequency Domain Convergence Properties in Iterative Learning Control", International Journal of Control., vol. 75, no. 14, pp.1114 -1126 2002

    下載圖示 校內:2018-08-26公開
    校外:2018-08-26公開
    QR CODE