簡易檢索 / 詳目顯示

研究生: 黃家緯
Huang, Chia-Wei
論文名稱: 錫鋅系無鉛銲錫(Sn-Zn-Al-Ag Solder)之研究
Evaluation of Lead-free Sn-Zn Based Solders (Sn-Zn-Al-Ag Solder)
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 可靠度抗氧化性潤濕性錫鋅合金無鉛銲錫界面反應
外文關鍵詞: reliability, wettability, interfacial reaction, lead-free solder, oxidation resistance, Sn-Zn alloy
相關次數: 點閱:112下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    因為鉛對地球環境與人類健康有潛在的威脅,因此無鉛銲錫的開發研究已經成為電子構裝產業中最重要的課題之一。近年來錫鋅系無鉛銲錫被認為擁有相當的潛力能夠取代傳統鉛錫合金,最主要是因為錫鋅合金之共晶溫度為二元銲錫系統中與鉛錫合金最為接近的系統,且在已研發的無鉛銲錫中,錫鋅合金的價格是最低廉的;但錫鋅銲錫合金的最大缺點則是抗氧化性太差,以及與一般電子構裝中常用基材間之潤濕性不佳。因此本研究主要目的就是於錫鋅系列銲錫合金中添加鋁元素與銀元素,希望藉由第三、四元素的添加來改善錫鋅銲錫合金之抗氧化性與潤濕性。
    顯微結構分析結果顯示,Sn-8.55Zn-0.45Al銲錫合金中添加銀(0wt%~3wt%),會於合金中形成AgZn3與Ag5Zn8化合物,且造成原本銲錫基地之富鋅相漸漸減少,因此銲錫合金基地組織從原本錫鋅共晶組織偏離成錫鋅亞共晶組織。熱差分析(Differential Scanning Calorimetry, DSC)結果顯示,Sn-8.55Zn-0.45Al三元合金有一共晶熔點,約197ºC;但當銀加入Sn-8.55Zn-0.45Al合金後,所生成之銀鋅化合物,約在300ºC左右才會完全熔融。在機械性質方面,添加銀會稍微增加Sn-8.55Zn-0.45Al-XAg(X=0.5wt%~3wt%)合金之抗拉強度與硬度,但卻使合金之伸長率大幅下降;當銀的添加量到達3wt%時,銲錫合金之伸長率從原本的47.1%下降至20%。
    熱重分析(Thermal Gravimetric Analyzer, TGA)結果顯示,銲錫合金在250°C、純氧的環境下,重量增加量之大小順序為Sn-9Zn>Sn-8.55Zn-0.45Al-XAg>Sn-8.55Zn-0.45Al。此結果顯示添加鋁可以增進錫鋅合金之抗氧化性,但添加銀反而會使銲錫合金之抗氧化性變差。從歐傑縱深分析(Auger Electron Spectroscopy, AES)得知,銲錫合金表面會生成ㄧ層氧化層;錫鋅合金表面為鋅之氧化物,而含鋁銲錫合金表面則為鋁之氧化物。在潤濕實驗中發現,Sn-8.55Zn-0.45Al- XAg合金與基材之潤濕性隨著銀含量(0.5wt%~ 3wt%)增加而下降,不過低銀含量(0.5wt%)銲錫合金與基材間之潤濕性質,仍優於共晶錫鋅合金。此外亦同時發現,錫鋅系無鉛銲錫合金與銅基材之潤濕性,似乎優於其與銅/鎳-磷/金基材。
    錫鋅合金與銅基材間反應生成Cu5Zn8與CuZn5兩種化合物,含鋁之銲錫合金則生成Al4.2Cu3.2Zn0.7三元化合物。經高溫時效後,錫鋅合金與銅基材界面會生成Cu6Sn5化合物,而含鋁之銲錫合金與銅基材界面則生成Cu5Zn8。在與銅/鎳-磷/金基材界面上,錫鋅合金會生成AuZn3化合物,含鋁之銲錫合金則是生成Al2(Au,Zn)化合物,且經高溫時效後,銲錫合金與銅/鎳-磷/金基材界面上之化合物幾乎不會成長。另外,當銀加入Sn-8.55Zn-0.45Al銲錫合金時,其界面會生成AgZn3化合物。
    本研究亦探討經多次重流與高溫時效後,Sn-8.55Zn-0.45Al-XAg銲錫合金之可靠度。結果顯示,錫鋅系銲錫合金與銅基材和銅/鎳-磷/金基材接合經多次重流後,其剪力強度並不會下降;但經高溫時效後則發現,錫鋅系銲錫合金與銅基材接合之剪力強度隨時效時間增加而下降,可是與銅/鎳-磷/金基材接合之剪力強度則不受時效時間影響;結果顯示,錫鋅系銲錫合金於銅/鎳-磷/金基材接合之可靠度明顯優於與銅基材接合。

    Abstract

    The development of lead-free solders has become an important issue in the electronics packaging industry because of environmental and health concerns. Recently, Sn-Zn based solders have been considered to be a potential candidate for lead-free solder because its melting temperature is relatively close to that of eutectic Sn-Pb solder. Sn-Zn solders also have lower cost than other lead-free solders. However, Sn-Zn solders exhibit unsatisfactory oxidation resistance and poor wettability on commonly used substrates. The purpose of this research is to investigate the incorporation of Al and Ag in Sn-Zn solder in order to enhance its wettability and oxidation resistance. The microstructure, mechanical property, wettability, oxidation behavior, interfacial reaction and reliability of the Sn-8.55Zn-0.45Al-(0~3wt%)Ag solders were investigated in this study.
    The microstructure of Sn-Zn based solders shows that the AgZn3 and Ag5Zn8 compounds are formed at the addition of (0.5wt%~3wt%)Ag to Sn-8.55Zn-0.45Al solders. The formation of Ag-Zn compounds (AgZn3 and Ag5Zn8) results in the variation of matrix from eutectic to hypoeutectic structure. The results of DSC (Differential Scanning Calorimetry) reveal that the Sn-8.55Zn-0.45Al solder has eutectic temperature at 197°C, but Ag-Zn compounds (AgZn3 and Ag5Zn8) melt above 300°C as Ag is added to the Sn-8.55Zn-0.45Al solder. An increase in Ag content results in little change in UTS (Ultimate Tensile Stress) and microhardness, but the elongation is prominently decreased. The elongation of the solders drops from 47.1% to 20% when Ag content increases from 0 to 3%.
    The results of TGA (Thermal Gravimetric Analysis) show that the weight gains at 250°C under O2 atmosphere descend in the order of Sn-9Zn>Sn-8.55Zn-0.45Al-(0.5wt%~3wt%)Ag>Sn-8.55Zn-0.45Al. This means that the incorporation of 0.45wt%Al enhances the oxidation resistance of Sn-Zn solder, while the weight gains of the Sn-8.55Zn-0.45Al-XAg solders increase as Ag was added into the Sn-8.55Zn-0.45Al solder. Auger depth profile shows that Zn and Al form an oxide film on the surface of Sn-9Zn and the Al-containing solders. The wetting results indicate that the wettability of Sn-8.55Zn-0.45Al-XAg solders decreases with increasing Ag content of solders. The Sn-Zn-Al-XAg solders containing low Ag content (0.5wt%) exhibit better wettability than the eutectic Sn-9Zn solder. Furthermore, it was also found that the wettability of Sn-Zn based solders on Cu substrate is better than that on Cu/Ni-P/Au substrate.
    The results of interfacial reaction indicate that Cu substrate forms Cu5Zn8 and CuZn5 with Sn-9Zn solder, and Al4.2Cu3.2Zn0.7 compound with Al-containing solders. However, it was detected that Cu6Sn5 forms at the Sn-9Zn/Cu interface and Cu5Zn8 forms at the Al-containing solders/Cu interface after aging for 1000 hours. In contacting with the Cu/Ni-P/Au substrate, Sn-9Zn solder forms AuZn3 compound, and the Al-containing solders forms Al2(Au,Zn) compound at the interface. After long time aging, the intermetallic compounds existing between solders and the Cu/Ni-P/Au metallization layers almost do not grow. It was found that the inter-diffusion between solders and Cu/Ni-P/Au is slower than that with Cu under aging. Furthermore, the additions of Ag to Sn-8.55Zn-0.45Al solder result in the formation of AgZn3 particles at the interface.
    This present work also investigated the reliability of the Sn-8.55Zn- 0.45Al-XAg solders under multiple reflow and thermal aging test. The results show that Sn-Zn based solder balls on Cu and Cu/Ni-P/Au substrates retain the shear strength under multiple reflow. Under thermal aging test, it was found that the shear strength of Sn-Zn based solder balls on Cu substrate decreases with increasing of aging time. However, the shear strength of Sn-Zn based solder balls on Cu/Ni-P/Au almost dose not change under thermal aging test. Thus, it was known that the Sn-Zn based solder balls on Cu/Ni-P/Au substrate exhibit better reliability than that on Cu substrate.

    總目錄 中文摘要…………………………………………………………….. I 英文摘要…………………………………………………………….. III 總目錄……………………………………………………………….. V 表目錄……………………………………………………………….. IX 圖目錄……………………………………………………………….. X 中英文對照表……………………………………………………….. XIV 第壹章 簡介………………………………………………………… 1 1-1銲錫合金在電子構裝產業上之應用………………………… 1 1-2傳統鉛錫合金之性質………………………………………… 1 1-3世界各國對無鉛議題的因應措施…………………………… 6 1-4無鉛銲錫合金之發展………………………………………… 8 1-4-1研發無鉛銲錫合金所應注意的問題…………………… 8 1-4-2目前已研發之無鉛銲錫合金…………………………… 10 1-4-2-1錫-銀系統…………………………………………… 12 1-4-2-2錫-銦系統…………………………………………… 13 1-4-2-3錫-鉍系統…………………………………………… 13 1-5錫鋅系無鉛銲錫系統………………………………………… 14 1-5-1錫鋅合金之性質………………………………………… 15 1-5-2錫鋅合金與基材之界面反應…………………………… 15 1-5-3其他錫鋅系無鉛銲錫系統……………………………… 17 1-6研究動機與目的……………………………………………… 17 第貳章 實驗方法與步驟…………………………………………… 19 2-1實驗構想……………………………………………………… 19 2-2銲錫合金的配製……………………………………………… 19 2-3熱性質分析…………………………………………………… 21 2-4顯微組織觀察與分析………………………………………… 21 2-5機械性質分析………..……………………………………… 21 2-6銲錫與基材之間潤濕行為….……………………………… 23 2-6-1基材前處理.…………………………………………… 23 2-6-2潤濕天平實驗.………………………………………… 23 2-6-3接觸角測量實驗………………………………………… 25 2-7抗氧化性質分析……………………………………………… 27 2-7-1熱重分析………………………………………………… 27 2-7-2表面氧化層之分析….…………………………………... 29 2-8銲錫與基材之間界面反應行為……………………………… 29 2-8-1浸鍍銲錫合金…………………………………………… 29 2-8-2高溫時效處理…………………………………………… 29 2-8-3界面介金屬化合物之分析……………………………… 30 2-9銲錫球可靠度分析..………………………………………….. 30 第參章 結果與討論………………………………………………… 33 3-1錫鋅鋁銀銲錫微觀組織、熱行為與機械性質分析………… 33 3-1-1顯微結構分析…………………………………………… 33 3-1-1-1 X光繞射分析………………………………………. 36 3-1-2熱差分析………………………………………………… 39 3-1-2-1銀鋅化合物…………………………………………. 39 3-1-3銲錫拉伸試驗分析……………………………………… 41 3-1-3-1銲錫合金維氏硬度值……………………………… 45 3-1-3-2破斷型態分析……………………………………… 45 3-2錫鋅鋁銀銲錫之氧化與潤濕行為分析……………………… 47 3-2-1銲錫合金之高溫氧化行為比較………………………… 47 3-2-1-1銲錫氧化速率計算………………………………… 50 3-2-1-2表面氧化物之分析………………….……………… 55 3-2-1-3氧化行為分析………….…………………………… 59 3-2-2銲錫合金之潤濕行為……………….………...………… 61 3-2-2-1助熔劑之影響……………………….……………… 61 3-2-2-2銲錫合金與銅基材間之潤濕行為…………….…… 63 3-2-2-3銲錫合金與銅/鎳-磷/金基材間之潤濕行為……….. 66 3-2-2-4銲錫合金潤濕現象之探討…………………………. 66 3-3錫鋅鋁銀銲錫與基材間之界面反應………………………… 69 3-3-1銲錫與基材之界面觀察與分析………………………… 69 3-3-1-1銲錫與銅基材間之界面反應………………………. 69 3-3-1-2銲錫與銅/鎳-磷/金基材間之界面反應…………….. 74 3-3-1-3界面金屬間化合物之結晶相………………….…… 77 3-3-1-4銲錫潤濕現象探討…………………………………. 80 3-3-2界面銀鋅化合物之探討……………………………….... 80 3-3-2-1不同型態之銀鋅化合物……………………………. 84 3-3-3高溫時效處理對銲錫與基材界面反應之影響...………. 88 3-3-3-1銲錫與銅基材之界面反應…………………………. 88 3-3-3-2銲錫與銅/鎳-磷/金基材之界面反應……………….. 93 3-4錫鋅鋁銀銲錫接點之可靠度分析…………………………… 96 3-4-1可靠度試驗對銲錫接點剪力強度之影響……………… 98 3-4-1-1銲錫接點經多次重流後之剪力強度………………. 98 3-4-1-2銲錫接點經高溫時效後之剪力強度………………. 98 3-4-2銲錫接點經可靠度試驗後之界面反應與破斷面分析… 101 3-4-2-1銲錫接點經多次重流後之界面反應與破斷面……. 101 3-4-2-2銲錫接點經高溫時效後之界面反應與破斷面……. 103 3-4-2-3浸鍍製程界面反應與重流製程界面反應之比較…. 108 第肆章 結論………………………………………………………… 112 參考文獻…………………………………………………………….. 114 自述………………………………………………………………….. 123 致謝………………………………………………………………….. 126 表目錄 表1-1不同成份鉛錫合金之性質…………………………………... 5 表1-2銲錫合金組成與其熔點………………………………...…… 11 表2-1本實驗所使用之助熔劑種類、成份與性質……………......... 26 表3-1 Sn-8.55Zn-0.45Al-XAg銲錫合金之最大抗拉強度、伸長率與維氏硬度值……………………………………………….. 43 表3-2合金之氧化速率…………………………………………....... 53 表3-3不同元素之氧化反應自由能與平衡氧分壓………………... 60 圖目錄 圖1-1一般IC元件在晶片構裝與基板構裝之過程………………. 2 圖1-2錫鉛二元相圖………………………………………………... 4 圖1-3錫鋅二元相圖………………………………………………... 16 圖2-1本實驗分析項目與流程示意圖…………………………....... 20 圖2-2拉伸試片示意圖……………………………………………... 22 圖2-3潤濕天平所量測的力和時間關係圖,與試片浸鍍過程之相 對位置……………………………………………………….. 24 圖2-4銲錫與基材之間的潤濕行為……….……………………….. 28 圖2-5銲錫重流曲線圖…….……………………………………….. 31 圖3-1銲錫合金之顯微組織(a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c)Sn- 8.55Zn-0.45Al-0.5Ag (d)Sn-8.55Zn-0.45Al-1Ag (e)Sn-8.55 Zn-0.45Al-2Ag (f)Sn-8.55Zn-0.45Al-3Ag………………….. 34 圖3-2 Sn-8.55Zn-0.45Al-1.5Ag銲錫合金之元素面掃描分析圖….. 35 圖3-3 Al-Ag-Zn三元相圖(350ºC)65………………………………... 37 圖3-4 Sn-8.55Zn-0.45Al-XAg銲錫合金之X光繞射分析圖……… 38 圖3-5銲錫合金熱差掃描分析曲線圖(a)Sn-8.55Zn-0.45Al (b) Sn- 8.55Zn-0.45Al-0.5Ag (c)Sn-8.55Zn-0.45Al-1Ag (d)Sn-8.55 Zn-0.45Al-3Ag………………………………………............. 40 圖3-6銲錫合金熱差掃描分析曲線放大圖………………………... 42 圖3-7 Sn-8.55Zn-0.45Al-XAg銲錫合金之應力應變曲線圖……… 44 圖3-8銲錫合金拉伸試片之破斷面分析(a)Sn-8.55Zn-0.45Al (b)Sn -8.55Zn-0.45Al-1.5Ag (c)Sn-8.55Zn-0.45Al-3……………... 46 圖3-9經拉伸試驗後,銲錫合金試片之縱剖面圖(a)Sn-8.55Zn- 0.45Al (b)Sn-8.55Zn-0.45Al-1.5Ag (c)Sn-8.55Zn-0.45Al- 3Ag…………………………………………………………... 48 圖3-10不同銲錫合金在250°C、純氧環境下之熱重分析曲線圖… 49 圖3-11不同銲錫合金在250°C、純氧下,經25分鐘後之熱重分 析曲線圖…………………………………………………...... 52 圖3-12不同銲錫合金在250°C、純氧下,重量增加量與時間平 方根之關係圖……………………………………………….. 54 圖3-13銲錫合金在氧化實驗前,表面之元素縱深分析(a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c)Sn-8.55Zn-0.45Al-3Ag……………. 56 圖3-14銲錫合金經250°C、300分鐘氧化實驗後,表面之元素縱  深分析(a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c) Sn-8.55Zn-0.45 Al- 3Ag…………………………………………………….... 57 圖3-15銲錫合金表面氧化層之低馬丫光繞射分析圖………… 58 圖3-16不同助熔劑對銲錫合金(a)潤濕時間與(b)最大潤濕力之影 響,基材為純銅,浸鍍溫度為250°C……………………… 62 圖3-17錫鋅銲錫之組成及浸鍍溫度對合金與銅基材間(a)潤濕時 間和(b)最大潤濕力的影響…...…………………………….. 64 圖3-18不同銲錫合金與銅基材之接觸角(250°C)………………… 65 圖3-19錫鋅銲錫之組成及浸鍍溫度對合金與銅/鎳-磷/金基材間 (a)潤濕時間和(b)最大潤濕力的影響…………………..….. 67 圖3-20不同銲錫合金與銅/鎳-磷/金基材之接觸角(250°C)............ 68 圖3-21銅基材浸鍍於250ºC銲錫合金120秒後之界面橫截面圖, (a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c)Sn-8.55Zn-0.45Al-0.5Ag 70 圖3-22銲錫合金與銅基材間介金屬化合物之元素面掃描分析, (a)Sn-8.55Zn-0.45Al (b)Sn-8.55Zn-0.45Al-0.5Ag………….. 72 圖3-23 Al-Cu-Zn三元相圖(500ºC)77………………………………. 73 圖3-24銅/鎳-磷/金基材浸鍍於250ºC銲錫合金120秒後之界面 橫截面圖,(a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c)Sn-8.55Zn- 0.45Al-0.5Ag………………………………………………... 75 圖3-25銲錫合金與銅/鎳-磷/金基材間介金屬化合物之元素面掃 描分析,(a)Sn-9Zn (b)Sn-8.55Zn-0.45Al (c)Sn-8.55Zn-0.45 Al-0.5Ag…………………………………………………….. 76 圖3-26 Sn-Zn、Sn-Zn-Al、Sn-Zn-Al-Ag銲錫合金與基材間之界 面介金屬化合物的X光繞射分析圖,(a)銅基材 (b)銅/鎳 -磷/金基材…………………………………………………... 78 圖3-27 Au-Zn二元相圖4…………………………………………… 79 圖3-28銅基材浸鍍入Sn-Zn-Al-0.5Ag銲錫合金後,經不同冷卻 條件後之界面橫截面圖,(a)空冷 (b)水淬………………… 81 圖3-29銅基材浸鍍入Sn-Zn-Al-0.5Ag銲錫合金後,經不同冷卻 條件後之界面化合物表面型態,(a)空冷 (b)水淬………… 83 圖3-30 Sn-Zn-Al-0.5Ag銲錫合金中以及銅基材界面上之Al-Zn 化合物,(a)與銅基材界面 (b)銲錫合金基地……………… 85 圖3-31空冷試片最底部的界面上生成化合物之型態,(a)表面型 態 (b)橫截面圖……………………………………………... 86 圖3-32界面銀鋅化合物生成區域(a)與生成過程之示意圖………. 87 圖3-33 Sn-9Zn銲錫合金與銅基材經150ºC、不同時間之時效處 理後之界面橫截面圖,(a)0小時 (b)500小時 (c)1000小 時…………………………………………………………….. 89 圖3-34 Sn-9Zn銲錫合金與銅基材經150ºC、1000小時之時效處 理後的界面橫截面圖……………………………………….. 91 圖3-35 Sn-8.55Zn-0.45Al/Cu試片經150°C時效處理(a)0小時 (b)500小時 (c)1000小時後的界面橫截面圖,與Sn-8.55 Zn-0.45Al- 0.5Ag/Cu試片經150°C時效處理(d)0小時 (e) 500小時 (f)1000小時後之界面橫截面圖………………… 92 圖3-36 Sn-Zn-Al-Ag銲錫合金經時效1000小時後與銅基材的(a) 界面橫截面圖,與(b)元素線掃描分析…………………….. 94 圖3-37銲錫合金與銅/鎳-磷/金基材經150°C、1000小時的時效 處理前後之界面橫截面圖,Sn-9Zn (a)時效前(b)時效後, Sn-8.55Zn-0.45Al (c)時效前(d)時效後,Sn-8.55Zn-0.45Al -0.5Ag(e)時效前(f)時效後………………………………….. 95 圖3-38銲錫合金與銅/鎳-磷/金基材經150°C、1000小時的時效 處理後之界面元素線掃描分析圖,(a)Sn-9Zn (b)Sn-8.55 Zn-0.45Al(c) Sn-8.55Zn-0.45Al-0.5Ag……………………... 97 圖3-39不同成份之銲錫球與(a)銅基材、(b)銅/鎳-磷/金基材接合 後,其剪力強度與重流次數之關係圖…………………….. 99 圖3-40不同成份之銲錫球與(a)銅基材、(b)銅/鎳-磷/金基材接合 後,其剪力強度與150°C高溫時效時間之關係圖……….. 100 圖3-41經10次重流後,不同成份之銲錫球與銅基材之界面反應 與剪力測試後破斷面之橫截面圖,(a)(b)Sn-Pb(c)(d)Sn-9Zn (e)(f)Sn-8.55Zn-0.45Al(g)(h)Sn-8.55Zn-0.45Al-0.5Ag……. 102 圖3-42經10次重流後,不同成份之銲錫球與銅/鎳-磷/金之界面 反應與剪力測試後破斷面之橫截面圖,(a)(b)Sn-Pb (c)(d) Sn-9Zn (e)(f)Sn-8.55Zn-0.45Al (g)(h)Sn-8.55Zn-0.45Al- 0.5Ag………………………………………………………… 104 圖3-43經時效1000小時後,不同成份之銲錫球與銅基材之界面 反應與剪力測試後破斷面之橫截面圖,(a)(b)Sn-Pb (c)(d) Sn-9Zn (e)(f)Sn-8.55Zn-0.45Al (g)(h)Sn-8.55Zn-0.45Al-0.5 Ag……………………………………………………………. 105 圖3-44經時效1000小時後,不同成份之銲錫球與銅/鎳-磷/金之 界面反應與剪力測試後破斷面之橫截面圖,(a)(b)Sn-Pb (c)(d)Sn-9Zn(e)(f)Sn-8.55Zn-0.45Al(g)(h)Sn-8.55Zn-0.45Al -0.5Ag……………………………………………………….. 107 圖3-45 Sn-Zn-Al銲錫合金與銅基材經不同製程後,在界面所生 成的介金屬化合物之元素線掃描分析,(a)浸鍍製程 (b) 重流製程…………………………………………………….. 109 圖3-46 Sn-Zn-Al銲錫球之(a)外觀,與(b)表面元素縱深分析…… 111

    參考文獻

    1. M. R. Pinnel and W. H. Knausenberger, “Interconnection System Requirements and Modeling”, AT&T Technical Journal, Vol. 66, No. 4, 1987, pp. 45-56.
    2. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering. R, Vol. 27, No. 5-6, 2000, pp. 95-141.
    3. P. T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 14-19.
    4. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, 1958, pp. 52, 336, 633, 861, 1107, 1217.
    5. H. H. Manko, Solders and Soldering, 2nd Edn., McGraw-Hill, New York, 1979, Chap. 3, pp. 55-153.
    6. J. S. Hwang, Solder Paste in Electronics Packaging, Van Nostrand Reinhold, New York, 1992, Chap. 4, pp. 71-121.
    7. S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 13-13.
    8. K. N. Tu and K. Zeng, “Tin-lead (SnPb) Solder Reaction in Flip Chip Technology”, Materials Science and Engineering R, Vol. 34, No. 1, 2001, pp. 1-58.
    9. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1996, pp. 217-223.
    10. B. Trumble, ”Get the Lead Out!”, IEEE Spectrum, Vol. 35, No. 5, 1998, pp. 55-60.
    11. A. Z. Miric and A. Girusd, “Lead-free Alloys”, Soldering & Surface Mount Technology, Vol. 10, No. 1, 1998, pp. 19-25.
    12. 謝哲松,王壬,無鉛銲錫對我電子產業之衝擊,化工資訊,第14之12期,2000,61-66頁。
    13. C. Melton, “Alternative of Lead bearing Solder Alloys”, Proceeding of the 1993 IEEE International Sympocium on Electronics and the Environment, Arlington, USA, 1993, pp. 94-97.
    14. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, No. 2, 1997, pp. 65-68.
    15. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, Internationals Materials Reviews, Vol. 40, No. 2, 1995, pp. 65-92.
    16. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 693-700.
    17. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott and D. W. Finley, “Wave Soldering with a Low Melting Point Bi-Sn Alloy Effects of Soldering Temperatures and Circuit Board Finishes”, Journal of Electronic Materials, Vol. 25, No. 7, 1996, pp. 1128-1131.
    18. M. E. Loomans, S. Vaynamn, G. Ghosh and M. E. Fine, “Investigation of Multi-component Lead-free Solders”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 741-746.
    19. I. Artaki, A. M. Jackson and P. T. Vianco, “Fine Pitch Surface Mount Technology Assembly with Lead-free”, Soldering & Surface Mount Technology, No. 20, 1995, pp. 27-32.
    20. N. C. Lee, J. Slattery, J. Sovinsky, I. Artaki and P. Vianco, “Novel Lead-free Solder Replacement”, Circuits Assembly, Vol. 6, No. 10, 1995, pp. 36-44.
    21. F. Hua and J. Glazer, “Lead-free Solders for Electronic Assembly”, TMS Annual Meeting, Design Reliability of Solders and Soder Interconnections, Orlando, USA, 1997, pp. 65-73.
    22. M. McCormack and S. Jin, “Progress in the Design of New Lead-free Solder Alloys”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 36-40.
    23. A. M. Jackson, P. T. Vianco and I. Artaki, “Manufacturing Feasibility of Several Lead-free Solders for Electronic Assembly”, Proceeding of the 7th International SAMPE Electronics Conference, Parsippany, NJ, Vol. 7, 1994, pp. 381-393.
    24. M. McCormack and S. Jin, “Improved Mechanical Properties in New Pb-free Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 715-720.
    25. C. M. Miller, I. E. Anderson and J. F. Smith, “A Viable Tin-Lead Solder Substitute - Sn-Ag-Cu”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 595-601.
    26. U. R. Kattner and W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase-Diagram”, Journal of Electronic Materials, Vol 23, No. 7, 1994, pp. 603-610.
    27. P. T. Vianco, F. M. Hosking and J. A. Rejent, “Wettability Analysis of Tin-based Lead free solders”, Proceedings of the Technical Program National electronic Packaging and Production Conference, 3, Published by Cahner Exposition Group, Anaheim, CA, Vol. 3, 1992, pp. 1730-1738.
    28. D. B. Knorr and L. E. Felton, “Designing Lead-free Solder Alloys for Advanced Electronics Assembly”, Proceedings of the 1994 Design for Manufacturability Conference, ASME, New York, 1994, pp. 27-34.
    29. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 687-690.
    30. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical-Properties”, Applied Physics Letters, Vol. 63, No. 1, 1993, pp. 15-17.
    31. W. J. Tomlinson and A. Fullylove, “Strength of Tin-Based Soldered Joints”, Journal of Materials Science, Vol. 27, No. 21, 1992, pp. 5777-5782
    32. S. Kang and A. Sarkhel, “ Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 701-707.
    33. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, “New Lead-free, Sn-Ag-Zn-Cu Solder Alloy with Improved Mechanical Properties”, Applied Physics Letters, Vol. 65, No. 10, 1994, pp. 1233-1235.
    34. W. Yang, R. W. Messler and L. E. Felton, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 765-772.
    35. D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto, “Activation-Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, Journal of Electronic Materials, Vol. 26, No. 7, 1997, pp. 883-887.
    36. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T. Tainigauchi and K. Tadayma, “Development of New Pb-free Solder Alloy of Sn-Ag-Bi System”, Proceeding EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, Danvers, MA, USA, 1999, pp. 21-24.
    37. L. Ye, Z. Liu and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-free Alloy by Adding Boron”, Advanced Packaging Materials: Processes, Properties and Interfaces, 1999. Proceedings. International Symposium on, Braselton, GA, 1999, pp. 262-267.
    38. S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson and T. Gosselin, “Formation of Ag3Sn Plates in Sn-Ag-Cu Alloys and Optimization of their Alloy Composition”, Proceedings - Electronic Components and Technology Conference, New Orleans LA, USA, 2003, pp. 64-70.
    39. K. Zeng, V. Vuorinen and J. K. Kivilahti, “Intermetallic Reactions between Lead-free SnAgCu Solder and Ni(P)/Au Surface Finish on PWBs”, Proceedings - Electronic Components and Technology Conference, Orlando, FL, 2001, pp. 693-698.
    40. I. E. Anderson, B. A. Cook, J. Harringa, R. L. Terpstra, J. C. Foley and O. Unal, “Effects of Alloying in Near-Eutectic Tin-Silver-Copper Solder Joints”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1827-1832.
    41. M. McCormack, H. S. Chen, G. W. Kamlott and S. Jin, “Significantly Improved Mechanical-Properties of Bi-Sn Solder Alloys by Ag-Doping”, Journal of Electronic Materials, Vol. 26, No. 8, 1997, pp. 954-958.
    42. J. W. Morris, Jr. and J. L. F. Goldstein, “Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 25, No. 12, 1994, pp. 2715-2722.
    43. A. D. Roming Jr., F. G. Yost and P. F. Hlava, “Intermetallic Layer Growth in Cu/Sn-In Solder Joints”, Proceedings Annual Conference - Microbeam Analysis Society, Bethlehem, USA, 1984, pp. 87-92.
    44. L. E. Felton, C. H. Raeder and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 28-32.
    45. K. Suganuma, “Interface phenomena in lead-free soldering”, Environmentally Conscious Design and Inverse Manufacturing, 1999 Proceeding, EcoDesign ’99 First International Symposium On, Tokyo, 1999, pp. 620-625.
    46. J. W. Morris, Jr. , J. L. Freer Goldstrin and Z. Mei, “Microstructure and Mechanical-Properties of Sn-in and Sn-Bi Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, 1993, pp. 25-27.
    47. E. P. Wood and K. L. Nimmo, “In Search of New Lead-free Electronic Solders”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 709-714.
    48. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, 1998, pp. 2859-2865.
    49. S. Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp. 1160-1163.
    50. H. M. Lee, S. W. Yoon and B. J. Lee, “Thermodynamic Prediction of Interface Phases at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1161-1166.
    51. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, No. 2, 2002, pp. 55-105.
    52. K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder/Cu Interface with or without Coating”, Journal of Materials Research, Vol. 15, No. 4, 2000, pp. 884-891.
    53. M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, “Ductile-to-brittle Transition in Sn-Zn solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51, No. 7, 2004, pp. 641-645.
    54. K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion in Solid State and Materials Science, Vol. 5, No. 1, 2001, pp. 55-64.
    55. Y. Chonan, T. Komiyama, J. Onuki and R. Urao, “Influence of P Content in Electroless Plated Ni-P Alloy Film on Interfacial Structures and Strength between Sn-Zn Solder and Plated Au/Ni-P Alloy Film”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1887-1890.
    56. T. Taguchi, R. Kato and S. Akita, “Lead-free Interfacial Structures and Their Relationship to Au Plating Including Accelerated Thermal Cycle Testing of Non-leaden BGA Spheres”, Electronic Components and Technology Conference, 2001 Proceedings 51st, Orlando, 2001, pp. 675-680.
    57. K. L. Lin and T. P. Liu, “High-temperature Oxidation of A Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, 1998, pp. 255-267.
    58. K. L. Lin, L.H. Wen and T. P. Liu, “Microstructures of the Sn-Zn-Al Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 3, 1998, pp. 97-105.
    59. A. Sebaoum, D. Vincent and D. Treheux, “Al-Zn-Sn Phase Dlagram- isothermal Diffusion in Ternary System”, Materials Science and Technology, Vol. 3, No. 4, 1987, pp. 241-248.
    60. K. L. Lin and Y. C. Wang, “Wetting Interaction of Pb-free Sn-Zn-Al Solders on Metal Plated Substrate”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1205-1210.
    61. C. M. Chuang, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder”, Journal of Materials Science, Vol. 37, No. 1, 2002, pp. 191-195.
    62. T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-free Solder and Copper Base Metal in Wetting”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1784-1790.
    63. J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructural Features and Vibration Fracture Behavior of Sn-Zn-Ag Solder Alloys”, IEEE CMPT, Int’l Symp. On Electron. Mater. Packag., Taiwan, 2002, pp. 276-281.
    64. Aldrich Chemical Company, Aldrich Handbook of Fine Chemicals and Laboratory Equipment, Aldrich Chemical Company, Milwaukee, 2000, pp. 636, 1252, 1521.
    65. G. Petzow and G. Effenberg, Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams Vol. 1, Weinheim, New York, 1988, pp. 89-95.
    66. R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys Part I, American Society for Metals, Ohio, 1973, pp. 104-111, 115-121.
    67. O. Kubaschewski and J. A. Catterall, Thermochemical Data of Alloys, Pergamon Press, London, 1956, pp. 66-69, 82-83.
    68. R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys Part II, American Society for Metals, Ohio, 1973, pp. 795-800, 813-822.
    69. R. Hultgren, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, New York, 1963, pp. 388-392, 395-400, 708-723.
    70. J. M. Song and K. L. Lin, “Behavior of Intermetallics in Liquid Sn-Zn-Ag Solder Alloys”, Journal of Materials Research, Vol. 18, No. 9, 2003, pp. 2060-2067.
    71. J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology, Prentice Hall, Upper Saddle River, NJ, 2000, Chap. 6, pp. 312-322.
    72. I. Barin, Thermochemical Date of Pure Substances, Vol. 1, VCH., New York, 1995, pp. 12, 48.
    73. I. Barin, Thermochemical Date of Pure Substances, Vol. 2, VCH., New York, 1995, pp. 1294, 1549, 1836.
    74. M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-free Solders”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1802-1807.
    75. C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, “Effect of Isothermal Aging on Ball Shear Strength in BGA Joints with Sn-3.5Ag-0.75Cu Solder”, Materials Transactions (JIM), Vol. 43, No. 8, 2002, pp. 1858-1863.
    76. M. Peng and A. Mikula, “Thermodynamic Properties of Liquid Cu-Sn-Zn Alloys”, Journal of Alloys and Compounds, Vol. 247, No. 1-2, 1997, pp. 185-189.
    77. H. Liang and Y. A. Chang, “A Thermodynamic Description for the Al-Cu-Zn System”, Journal of Phase Equilibria, Vol. 19, No. 1, 1998, pp. 25-36.
    78. S. Murphy, “The Structure of the T’ Phase in the System Al-Cu-Zn”, Metal Science Journal, Vol. 9, No. 4, 1975, pp. 163-168.
    79. Robert E. Reed-Hill and Reza Abbaschian, Physical Metallurgy Principles, PWS-Kent Pub, Boston, 1992, Chap. 15, pp. 579-583.
    80. B. F. Dyson, T. R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, Vol. 38, No. 8, 1967, pp. 3408-3409.
    81. K. Hoshino, Y. Iijima and K. Hirano, “Interdiffusion and Kirkendall Effect in Cu-Sn Alloys”, Transactions of the Japan Institute of Metals, Vol. 21, No. 10, 1980, pp. 674-682.
    82. F. H. Huang and H. B. Huntington, “Diffusion of Sb, Cd, Sn, and Zn in Tin”, Physical Review B, Vol. 9, No. 4, 1974, pp. 1479-1488.

    下載圖示 校內:2006-07-14公開
    校外:2006-07-14公開
    QR CODE