簡易檢索 / 詳目顯示

研究生: 陳君威
Chen, Chun-Wei
論文名稱: 具有不同蕭特基閘極金屬之砷化銦鋁/砷化銦鎵變晶式高電子移動率電晶體之研究
Investigation of InAlAs/InGaAs Metamorphic High Electron Mobility Transistors (MHEMT) with Different Schottky Gate Metals
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 43
中文關鍵詞: 變晶式高電子移動率電晶體蕭特基閘極金屬
外文關鍵詞: Schottky Gate Metals, MHEMT
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用分子束磊晶法成長及研製砷化銦鋁/砷化銦鎵變晶式高電子移動率場效電晶體。由於砷化銦鎵通道層具有較窄的能隙,因此可獲得較佳的載子傳輸特性並改善元件的轉導及高頻特性。然而,衝擊游離化效應通常伴隨著發生,而導致元件有較高的輸出電導與較低的崩潰電壓值。

      為了改善扭結效應,我們探討具有雙平面摻雜層之變晶性高電子移動率電晶體,並分別鍍上鈦/金、金、鉑/金、鎳/金等不同的閘極金屬,探討其對元件特性的影響。不同的閘極金屬可以獲得不同的蕭特基能障,而當蕭特基能障變大時,會使得空乏區增大,並提高夾止特性及崩潰電壓值,進而減低衝擊游離化效應,同時扭結效應亦隨之改善。

      此外,我們比較元件在室溫下的直流特性,並探討當溫度從300上升至510K時,元件對溫度的退化率。在室溫下,以鉑/金為閘極金屬之元件,具有較佳之崩潰電壓、最大轉導、電導、電壓增益、及高頻特性。在溫度為300至510K的範圍,以鈦/金為閘極金屬之元件,具有對溫度較佳之退化率,在導通電壓、臨限電壓、電導及電壓增益方面。

      In this thesis, the In0.42Al0.58As/In0.46Ga0.54As metamorphic high electron mobility transistors (MHEMTs) grown by molecular beam epitaxy (MBE) system have been fabricated and investigated. Due to the narrow gap property of the In0.46Ga0.54As channel layer, better carrier transport characteristics have been obtained to improve the transconductance and high-frequency characteristics of the studied device. Nevertheless, the impact ionization effects usually accompany within the narrow bandgap InGaAs channel. These problematic effects result in higher output conductance and lower breakdown voltage of the studied device.

      In order to improve the kink effects, we have investigated the double d-doped MHEMT by evaporating gate-alloys, including Ti/Au, Au, Pt/Au, and Ni/Au as the Schottky contacts to discuss their respective influences on device performance. Since different metal work function can get different Schottky barrier height, the Schottky barrier heights increase can make the channel’s depletion region increase and enhance the pinch-off characteristics and the breakdown voltage obviously. Then, impact ionization and the related kink effects within the channel can be eliminated.

      Furthermore, we compare the DC performances of the studied devices at room temperature, and discuss the temperature degradation rate with increasing the temperature from 300 to 510K. At room temperature, the device with Pt/Au gate metal shows better performances in BVGD, gm,max, gds, AV, fT, and fmax. At the regime of 300 to 510K, the device with Ti/Au gate metal shows better temperature degradation rates in Von, Vth, gds, and AV.

    Contents Abstract ……………………………………………………………………i Table Captions Figure Captions Chapter 1. Introduction ……………………………………………………1 1-1. Thesis Organizations ………………………………………………2 Chapter 2. The InGaAs/InAlAs/GaAs Metamorphic High Electron Mobility Transistor with Ti/Au & Au Schottky Gate Metals 2-1. Introduction …………………………………………………………4 2-2. Device Fabrication …………………………………………………5 2-3. Experimental Results and Discussion ………………………………7 2-3-1. DC Performances …………………………………………………7 2-3-2. Microwave Characteristics …………………………………………12 2-4. Summary ……………………………………………………………13 Chapter 3. The InGaAs/InAlAs/GaAs Metamorphic High Electron Mobility Transistor with Pt/Au & Ni/Au Schottky Gate Metals 3-1. Introduction …………………………………………………………15 3-2. Device Fabrication …………………………………………………16 3-3. Experimental Results and Discussion ………………………………17 3-3-1. DC Performances …………………………………………………17 3-3-2. Microwave Characteristics …………………………………………20 3-4. Summary ……………………………………………………………21 Chapter 4. Temperature Dependences of InGaAs/InAlAs/GaAs Metamorphic High Electron Mobility Transistor with Different Schottky Gate Metals 4-1. Introduction …………………………………………………………23 4-2. Device Fabrication …………………………………………………24 4-3. Experimental Results and Discussion ………………………………24 4-3-1. DC Performances …………………………………………………24 4-3-2. Microwave Characteristics …………………………………………27 4-4. Summary ……………………………………………………………27 Chapter 5. Conclusion and Prospect 5-1. Conclusion …………………………………………………………29 5-2. Prospect ……………………………………………………………30 References …………………………………………………………………32 Figures Publication List

    [1] W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
    [2] S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. Vol. 16, p.133, 1965.
    [3] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. Vol. 15, p.12, 1972.
    [4] H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc. Vol. 70, p.13, 1982.
    [5] R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
    [6] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, Vol. 34, pp. 2571 -2579, 1987.
    [7] M. E. Kim, A. K. Oki, G.M. Gorman, D. K. Umemoto, and J. B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications,” IEEE Trans. on Microwave Theory and Techniques, Vol. 37, pp. 1286 -1303, 1989.
    [8] H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
    [9] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 14, pp. 176-178, 1993.
    [10] F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. Vol. 14, pp. 332 –334,1993.
    [11] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
    [12] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
    [13] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/d(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
    [14] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/d(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
    [15] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan and M. J. W. Rodwell, “Transfer-substrate HBTs with 254GHz fT,” IEE Electron. Lett., vol. 35, pp.605-606, 1999.
    [16] Q. Lee, S. C. Martin, D. Mensa, R. P. Smith, J. Guthrie, and M. J. W. Rodwell, “Submicron transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 20, pp. 396-398, 1999.
    [17] S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shone, and M. Sawada, “Low threshold 650 nm band real refractive index-guided AlGaInP laser diodes with strain-compensated MQW active layer,” IEE Electron. Lett., vol. 36, pp. 1284-1286, 2000.
    [18] D. Jang, J. Shim, J. Lee, and Y. Eo, “Asymmetric output characteristics in 1.3 μm spot-size converted laser diodes,” IEEE J. Quantum Electron., vol. 37, pp. 1611-1617, 2001.
    [19] W. C. Liu; K. H. Yu; K. W. Lin; J. H. Tsai; C. Z. Wu; K. P. Lin; and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations” IEEE Trans. Electron Device., vol. 48, pp. 1522-1530, 2001.
    [20] W. C. Liu; W. L. Chang; W. S. Lour; K. H. Yu; K. W. Lin; C. C. Cheng; and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor” IEEE Trans. Electron Device., vol. 48, pp. 1290-1296, 2001.
    [21] W. C. Liu; K. H. Yu; R. C. Liu; K. W. Lin; K. P. Lin; C. H. Yen; C. C. Cheng; and K. B. Thei, “ Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET” IEEE Trans. Electron Device., vol. 48, pp. 2677-2683, 2001.
    [22] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
    [23] K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
    [24] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
    [25] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; R. C. Liu; C. H. Yen; J. Y. Chen; C. C. Cheng; and Wen-Chau Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT)” IEEE Trans. Electron Device., vol. 50, pp. 874-879, 2003.
    [26] H. M. Chuang, S. Y. Cheng; X. D. Liao; C. Y. Chen; and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
    [27] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device., vol. 50, pp. 1717-1723, 2003.
    [28] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative Study on DC Characteristics of In0.49Ga0.51P-Channel Heterostructure Field-Effect Transistors with Different Gate Metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
    [29] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Double-Barrier-Emitter Triangular-Barrier Optoelectronic Switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419, 2004.
    [30] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a New BBOS With an AlGaAs-d(n+)-GaAs-InAlGaP Collector Structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
    [31] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/AlxGa1-xAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlxGa1-xAs graded layers,” Semicond. Sci. Technol., vol. 19, pp. 351-358, 2004.
    [32] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, vol. 22, pp. 832-837, 2004.
    [33] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs Double Doped Channel Heterostructure Field-effect Transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
    [34] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
    [35] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, W. S. Lour, and W. C. Liu, “Influences of the mesa-sidewall effect on Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Semicond. Sci. Technol., vol. 14, pp. 887-891, 1999.
    [36] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, pp. L1385-1387, 1999.
    [37] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, K. H. Yu, K. W. Lin, C. C. Cheng, W. S. Lour, and W. C. Liu, “High-performance double delta-doped sheets Ga0.51In0.49P/In0.15Ga0.85As/Ga0.51In0.49P pseudomorphic heterostructure transistors,” Semicond. Sci. Technol., vol. 15, pp. 1-6, 2000.
    [38] K. P. Lin, C. H. Yen, W. L. Chang, K. H. Yu, K. W. Lin, and W. C. Liu, “Study of a high-barrier-gate pseudomorphic transistor with a step-compositioned channel and bottomside delta-doped sheet structure,” Semicond. Sci. Technol., vol. 15, pp. 643-647, 2000.
    [39] K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and Comparison of In0.49Ga0.51P/GaAs Single and Double Delta-Doped Pseudomorphic High Electron Mobility Transistors (d-PHEMT’s),” Solid-State Electron., vol. 45, pp. 309-314, 2001.
    [40] B.-U.H. Klepser, C. Bergamaschi, W. Patrick, M. Beck, “Comparison and optimisation of different ohmic contact metallisations for InP-HEMT structures with doped and undoped cap-layers,” Indium Phosphide and Related Materials, 1994. Conference Proceedings. Page(s): 174 – 177 Sixth International Conference on , 27-31 March 1994.
    [41] H. C. Duran, L. Ren, M. Beck, M.A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” Electron Devices, IEEE Transactions on Volume 45, Issue 6, June 1998 Page(s): 1219-1225.
    [42] D.P. Docter, K.R.Elliott, A.E.Schmitz, K. Kiziloglu, J.J. Brown, D.S. Harvey, H.M. Karatnicki, “Low noise InAlAs/InGaAs HEMTs grown by MOVPE,” Indium Phosphide and Related Materials, Page(s): 219 – 222, 1998 International Conference on 11-15 May 1998.
    [43] R. Grundbacher, R. Lai, M. Nishimoto, T.P. Chin, Y.C. Chen, M. Barsky, T. Block, D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” Electron Device Letters, IEEE Volume 20, Issue 10, Page(s): 517 – 519, Oct. 1999.
    [44] P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, IPRM. IEEE International Conference Page(s):9 – 14, 2001.
    [45] C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil, R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” Electronics Letters Volume 38, Issue 20, Page(s): 1175 – 1177, 26 Sept. 2002.
    [46] Y. L. Lai, E. Y. Chang, C. Y. Chang, T. K. Chen, T. H. Liu, S. P. Wang, T. H. Chen and C. T. Lee, “5mm High-Power-Density Dual-Delta-Doped Power HEMTS for 3V L-Band Applications,” IEEE Electron Device Lett., vol. 17, pp. 229-231, 1996.
    [47] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate InGaP/InGaAs pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
    [48] Y. J. Chen, C. S. Lee, T. B. Wang, W. C. Hsu, Y. W. Chen, K. H. Su, and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As Inverse Composite Channel Metamorphic HEMT,” Jpn. J. Appl. Phys., vol. 44, pp. 5903-5908, 2005.
    [49] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in d-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol. 26, pp. 59-61, 2005.
    [50] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85(21), pp. 5087-5089, 2004.
    [51] P. Win, Y. Druelle, A. Cappy, Y. Cordier, D. Adam, and J. Favre, “Metamorphic In0.3Ga0.7As/In0.29Al0.71As layer on GaAs: a new structure for millimeter wave ICs,” IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Proceedings, 1993.
    [52] Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, D. Ferre, ”AlInAs/GaInAs metamorphic HEMT's on GaAs substrate: from material to device,” Indium Phosphide and Related Materials, 1998 International Conference on 11-15 May, pp. 211 – 214, 1998.
    [53] D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electronics Letters, Volume 35, Page(s): 1854 – 1856.
    [54] C. S. Whelan, W.F. Hoke, R.A. McTaggart, M. Lardizabal, P.S. Lyman, P.F. Marsh, T.E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE, Electron Device Letters, Volume 21, Issue 1, Page(s):5 – 8.
    [55] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE, Microwave and Guided Wave Letters, Volume 7, Issue 1, Page(s): 6 – 8.
    [56] D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As HEMTs on GaAs substrates,” IEEE, Electron Device Letters, Volume 22, Issue 8, Page(s): 364 – 366.
    [57] D. C. Dumka, W.E. Hoke, P.J. Lemonias, G. Cueva, I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200 GHz,” Electron Devices Meeting, IEDM Technical Digest. International. Page(s): 783 – 786, 1999.
    [58] K .C. Hwang, P.C. Chao, C. Creamer, K.B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE, Electron Device Letters, Volume 20, Issue 11, Page(s): 551 – 553.
    [59] H. S. Yoon, J. H. Lee, J. Y. Shim, J. Y. Hong, D. M. Kang, W. J. Chang, H. C. Kim, K. I. Cho, “0.15 mm gate length InAlAs/InGaAs power metamorphic HEMT on GaAs substrate with extremely low noise characteristics,” Indium Phosphide and Related Materials, Page(s): 114 – 117.
    [60] F. Benkhelifa, M. Chertouk, M. Walther, R. Losch, G. Weimann, “Metamorphic HEMT 0.5 μm low cost high performance process on 4" GaAs substrates,” Indium Phosphide and Related Materials, Conference Proceedings. 2000 International Conference, Page(s): 290 – 293.
    [61] P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry, A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, 2001. IPRM. IEEE International Conference, Page(s): 9 – 14.
    [62] D. C. Dumka, H.Q. Tserng, M.Y. Kao, E.A. Beam, P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE, Electron Device Letters, Volume 24, Issue 3, Page(s): 135 – 137.
    [63] H. Happy, S. Bollaert, H. Foure, A. Cappy, “, Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≤x≤0.6) HEMTs on GaAs substrate” IEEE Transactions, Electron Devices, Volume 45, Issue 10, Page(s): 2089 – 2095.
    [64] W. C. Hsu, Y. J. Che, C. S. Lee, T. B. Wang, Y. S. Lin, C. L. Wu, “High-temperature thermal stability performance in d-doped In0.425Al 0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE, Electron Device Letters, Volume 26, Issue 2, Page(s): 59 – 61.
    [65] K. Yuan, K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” IPRM. Indium Phosphide and Related Materials Conference, Page(s): 161 – 164.
    [66] R. T. Webster, A. F. M. Anwar, J. L. Heaton, K. Nichols, S. Duncan, “Impact ionization in AlGaAsSb/InGaAs/GaAsSb metamorphic HEMTs,” Indium Phosphide and Related Materials, Page(s): 233 – 234.
    [67] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melenders, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs/GaInAs HEMTs utilizing low-temperature AlInAs buffers grown by MBE,”IEEE Electron Device Lett., vol. 10, pp. 565-567, 1989.
    [68] Y. Hori and M. Kuzubara, “Improved model for kink effect in AlGaAs/InGaAs heterojunction FET's,” IEEE Trans. Electron Devices, vol. 41, pp. 2262-2267, 1994.
    [69] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, “Influence of Hole Accumulation on the Source Resistance, Kink Effect, and On-State Breakdown of InP-Based HEMTs: Light Irradiation Study,” in 13th Proceedings of Indium Phosphide and Related Materials, pp 456-459, 2001.
    [70] R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
    [71] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
    [72] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs Double Doped Channel Heterostructure Field-effect Transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
    [73] E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in d-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
    [74] G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
    [75] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
    [76] H. Q. Zheng, G. I. Ng, Y. Q. Zhang, K. Radhakrishnan, K. Y. Lee, P. Y. Chee, M. S. Tse, J. X. Weng, and S. F. Yoon, “High linearity, current drivability and fmax using pseudomorphic GaAs double-heterojunction HEMT (DHHEMT),” Proc. IEEE International Conference on Semiconductor Electronics, 1996, pp. 12-14.
    [77] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
    [78] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
    [79] K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
    [80] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs (0 x 0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, pp. 1745-1749, 1995.
    [81] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
    [82] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
    [83] W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M. O’Bryan, D. Sivco, and A. Y. Cho, “Transparent and opaque Schottky contacts on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 66, pp. 3471-3473, 1995.
    [84] K. Yuan, K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” IPRM. Indium Phosphide and Related Materials Conference, Page(s): 161 – 164.
    [85] R. T. Webster, A.F.M. Anwar, J.L. Heaton, K. Nichols, S. Duncan, “Impact ionization in AlGaAsSb/InGaAs/GaAsSb metamorphic HEMTs,” Indium Phosphide and Related Materials, Page(s): 233 – 234.
    [86] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As/InxGa1-xAs Metamorphic HEMTs with Pseudomorphic and Symmetrically-Graded Channels,” IEEE Trans. Electron Devices, vol. 52, pp. 1079-1086, 2005.
    [87] K. Higuchi, H. Matsumoto, T. Mishima, and T. Nakamura, “Optimum design and fabrication of InAlAs/InGaAs HEMT’s on GaAs with both high breakdown voltage and high maximum frequency of oscillation,” IEEE Trans. Electron Devices, vol. 46, pp. 1312-1318, July 1999.
    [88] M. Boudrissa, E. Delos, Y.Cordier, D. Theron, and J.C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, pp. 512-514, Nov. 2000.
    [89] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. New York: Wiley, 1985, pp. 250
    [90] D. L. Edgar, N.I. Cameron, H. McLelland, M.C. Holland, M.R.S. Taylor, I.G. Thayne, C.R. Stanley, S.P. Beaumont, “Metamorphic GaAs HEMTs with fT of 200 GHz,” IEE Colloquium, Advances in Semiconductor Devices (Ref. No. 1999/025), Page(s): 7/1 - 7/5.
    [91] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, J.C. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT, modeling and measurements,” IEEE Transactions, Electron Devices, Volume 48, Issue 6, Page(s): 1037 – 1044.
    [92] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE, Electron Device Letters, Volume 19, Issue 9, Page(s): 345 – 347.
    [93] M. Zaknoune, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67 As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” 56th Annual, Device Research Conference Digest, Page(s): 34 – 35.
    [94] Y. Cordier, M. Zaknoune, S. Bollaert, A. Cappy, “Charge control and electron transport properties in InyAl1-yAs/InxGa1-xAs metamorphic HEMTs: effect of indium content,” Conference Proceedings. Indium Phosphide and Related Materials, Page(s): 102 – 105.
    [95] Leuther, A. Tessmann, M. Dammann, W. Reinert, M. Schlechtweg, M. Mikulla, M. Walther, G. Weimann, “70 nm low-noise metamorphic HEMT technology on 4 inch GaAs wafers,” International Conference, Indium Phosphide and Related Materials, Page(s): 215 – 218, 2003.
    [96] D. W. Tu, S. Wang, J. S .M. Liu, K. C. Hwang, W. Kong, P.C. Chao, K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE, Microwave and Guided Wave Letters, Volume 9, Issue 11, Page(s): 458 – 460, 1999.
    [97] W. E. Hoke, T. D. Kennedy, A. Torabi, C. S. Whelan, P. F. Marsh, R. E. Leoni, C. Xu, K. C. Hsieh, “High indium metamorphic HEMT on a GaAs substrate,” International Conference, Molecular Beam Epitaxy, Page(s): 73 – 74, 2002.
    [98] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, D. Theron, “60-GHz high power performance In0.35Al0.65As-In0-35Ga0.65As metamorphic HEMTs on GaAs,” IEEE, Electron Device Letters, Volume 24, Issue 12, Page(s): 724 – 726.
    [99] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's,” IEEE, Electron Device Letters, Volume 20, Issue 11, Page(s): 551 – 553.
    [100] W. E. Hoke, T. D. Kennedy, A. Torabi, C. S. Whelan, P. F. Marsh, R. E. Leoni, J. H. Jang, I. Adesida, K. L. Chang, K. C. Hsieh, “Properties of metamorphic materials and device structures on GaAs substrates,” 2002 International Conference, Molecular Beam Epitaxy, Page(s): 69 – 70.
    [101] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
    [102] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, Y. Ishii, “Mechanism and structural dependence of kink phenomena in InAlAs/InGaAs HEMTs,” International Conference, Indium Phosphide and Related Materials, Page(s): 365 – 368.
    [103] T. Suemitsu, M. Tomizawa, T. Enoki, Y. Ishii, “Enhancement of weak impact ionization in InAlAs/InGaAs HEMTs induced by surface traps: simulation and experiments,” IWCE-6. Computational Electronics, Extended Abstracts of 1998 Sixth International Workshop, Page(s): 250 – 253.

    下載圖示 校內:2007-06-29公開
    校外:2008-06-29公開
    QR CODE