簡易檢索 / 詳目顯示

研究生: 李宜儒
Lee, Yi-Ru
論文名稱: 利用固相合成法製備Ca1-2XNaXDyXWO4, Ba1-2XNaXDyXWO4和Ca1-2XNaXDyXNb2O6化合物及其光譜性質研究
Solid state Synthesis and Luminescence Properties of Ca1-2XNaXDyXWO4, Ba1-2XNaXDyXWO4 and Ca1-2XNaXDyXNb2O6 compounds
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 螢光粉鎢酸鹽鈮酸鹽稀土元素
外文關鍵詞: phosphor, Scheelite, rare earth
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用固相合成法的方式製備不含稀土離子的螢光粉主體CaWO4、BaWO4以及CaNb2O6,並摻雜Dy3+離子作為發光中心,另添加和Dy3+離子相同比例的Na+離子作為電荷補償劑,探討不同晶體結構的主體材料對螢光粉發光性質的影響。實驗結果顯示,Ca0.96Dy0.02Na0.02WO4和Ba0.96Dy0.02Na0.02WO4在900℃的溫度下燒結並持溫20小時後可成功燒結出斜方晶系的白鎢礦結構。而Ca0.96Dy0.02Na0.02Nb2O6則在1100℃溫度下燒結並持溫20小時後燒結出斜方晶系的鎢青銅結構;此化合物有一低溫相變,在650℃的溫度下褪火處理10小時後,可轉變爲正方晶系的鎢青銅結構。
    由光致發光光譜顯示,Ca0.96Dy0.02Na0.02WO4, Ba0.96Dy0.02Na0.02WO4以及Ca0.96Dy0.02Na0.02Nb2O6螢光粉體在激發光波長為350nm的激發下,可發出487nm(4F9/2→6H15/2)的藍光和574nm(4F9/2→6H13/2)的黃光,黃光的強度比藍光強,換算出的CIE色度座標Ca0.96Dy0.02Na0.02WO4為(0.34,0.33) 而Ba0.96Dy0.02Na0.02WO4為(0.32,0.29),均座落在白光區。斜方晶系的Ca0.96Na0.02Dy0.02Nb2O6黃光比藍光強太多,混合的光不在白光區。但是,經退火後的正方晶系Ca0.96Na0.02Dy0.02Nb2O6由於其對稱性的提高,使黃光強度有所下降,換算出的CIE色度座標為(0.32,0.30),亦座落在白光區。
    關鍵字:螢光粉 鎢酸鹽 鈮酸鹽 稀土元素

    The aim of this study was to develop some new phosphor whose host material contained no rare-earth (RE) element. We chose CaWO4, BaWO4 and CaNb2O6 as the RE-free host and studied the spectroscopic properties of Dy3+ in these hosts. Na+ was co-doped with Dy3+ in order to maintain the overall charge neutrality. The experiment results showed that after sintering at 900 C for 20 hours Ca0.96Dy0.02Na0.02WO4 and Ba0.96Dy0.02Na0.02WO4 crystallized in the monoclinic Scheelite structure, while the sintering temperature for Ca0.96Dy0.02Na0.02Nb2O6 to form the monoclinic tungsten-bronze (MTB) was 1100 C. The later showed a low temperature phase transition and after annealing at 650 C for 10 hours, the sample transformed to the tungsten-bronze (TTB) structure.
    Photoluminescence spectroscopy showed that under the 350 nm excitation Ca0.96Dy0.02Na0.02WO4, Ba0.96Dy0.02Na0.02WO4, and Ca0.96Dy0.02Na0.02Nb2O6 gave out two dominant emissions at 487 nm (4F9/2→6H15/2, blue) and 574 nm (4F9/2→6H13/2, yellow), respectively. The yellow lights were stronger than the blue lights in all three phosphors. The CIE color coordinates for Ca0.96Dy0.02Na0.02WO4 and Ba0.96Dy0.02Na0.02WO4 were calculated to be (0.34, 0.33) and (0.32, 0.29) respectively, which were all located in the white region. The yellow emission of the MTB-structured Ca0.96Dy0.02Na0.02Nb2O6 was far too stronger and the mixture of the two emissions was not in the white region. However, in the TTB-structured Ca0.96Dy0.02Na0.02Nb2O6 the yellow emission was reduced, presumably arising from the higher symmetry of the structure. The CIE color coordinate of the TTB-structured Ca0.96Dy0.02Na0.02Nb2O6 was (0.32, 0.30), which was also in the white region.
    Key words:phosphor,Scheelite,rare earth

    摘要 I Abstract II 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 1 1.1前言 1 1.2研究動機與目的 2 第二章 理論基礎與文獻回顧 4 2.1螢光材料簡介 4 2.2螢光材料分類 6 2.2.1以材料特性分類: 6 2.2.2以發光中心分類: 7 2.2.3以材料組成分類:[30] 8 2.3 螢光材料組成與設計[31] 9 2.3.1主體材料 9 2.3.2活化劑 10 2.3.3抑制劑 12 2.4螢光材料性質 13 2.4.1發光定義 13 2.4.2組態座標(Configuration Coordinate)[32] 13 2.4.3電子聲子交互作用(Electron-Phonon Interaction)[32] 13 2.4.4 LaPorte選擇律(LaPorte,s Rule )[33] 14 2.4.5自旋選擇律(Spin Selection Rule)[33] 14 2.4.6法蘭克-康頓原理(Franck-Condon Principle)[34] 15 2.4.7史托克位移(Stokes Shift)[4] 16 2.4.8電子雲擴張效應[4] 17 2.4.9晶格場理論[4, 31] 18 2.4.10發光效率[32] 19 2.4.11影響發光效率的因素 20 2.5螢光材料合成方法 23 2.5.1固相合成法(Solid State Method) 23 2.5.2溶膠凝膠法(Sol-Gel Method) 23 2.5.3共沉法(Coprecipitation Method) 24 2.5.4水熱法(Hydrothermal Method) 24 2.5.5燃燒法(Combustion Method) 24 2.5.6噴霧熱分解法(Spray-Pyrolysis Method) 25 2.5.7檸檬酸法(Citric Acid Method) 25 2.5.8微波輔助合成法(Microwave Assisted Method) 26 2.6色彩簡介 27 2.6.1視覺敏感度 27 2.6.2 CIE色度座標圖 27 2.6.3 色溫 29 2.6.4 演色性 30 2.7 CaWO4和BaWO4結構(Scheelite structure) [5-11] 32 2.8 CaNb2O6結構[35] 33 第三章 實驗方法與步驟 34 3.1實驗概述 34 3.2實驗原料 34 3.3實驗流程 35 3.3.1固相合成法製備Ca0.96Dy0.02Na0.02WO4和Ba0.96Dy0.02Na0.02WO4 35 3.3.2固相合成法製備Ca0.96Dy0.02Na0.02Nb2O6 36 3.3.3燒結條件 37 3.4儀器設備 39 3.4.1實驗儀器設備 39 3.4.2分析儀器設備 39 第四章 結果與討論 42 4.1相結構分析 42 4.1.1 Ca0.96Dy0.02Na0.02WO4的XRD圖 43 4.1.2 Ba0.96Dy0.02Na0.02WO4 XRD圖 46 4.1.3 Ca0.96Dy0.02Na0.02Nb2O6 XRD圖 47 4.2電子顯微鏡分析 49 4.2.1 Ca0.96Dy0.02Na0.02WO4的SEM及EDS成分分析圖 49 由SEM圖可以看出Ca0.96Dy0.02Na0.02WO4的粉末顆粒尺寸大約0.5~1μm之間,且存在許多孔隙,部分顆粒之間有團聚現象。 49 4.2.2 Ba0.96Dy0.02Na0.02WO4的SEM及EDS成分分析圖 51 由SEM圖可以看出Ba0.96Dy0.02Na0.02WO4的粉末顆粒尺寸大約1~2μm之間,且孔隙數目及所佔的比例較少,部分顆粒之間有團聚現象。 51 4.2.3 Ca0.96Dy0.02Na0.02Nb2O6的SEM及EDS成分分析圖 53 由SEM圖可以看出Ca0.96Dy0.02Na0.02Nb2O6的粉末顆粒尺寸大約0.2~2μm之間,孔隙數目不多,應是燒結成相溫度較高(1100℃)使顆粒熔融程度較大,原子擴散較完全所致,部分顆粒之間有團聚現象。 53 4.3紫外-可見光吸收光譜分析 55 4.3.1 Ca0.96Dy0.02Na0.02WO4吸收光譜 55 4.3.2 Ba0.96Dy0.02Na0.02WO4吸收光譜 56 4.3.3 Ca0.96Dy0.02Na0.02Nb2O6吸收光譜 57 4.4拉曼光譜分析 58 4.4.1 CaWO4和BaWO4 58 4.5螢光光譜分析 59 4.5.1 Ca0.96Dy0.02Na0.02WO4 螢光光譜 59 4.5.2 Ba0.96Dy0.02Na0.02WO4 螢光光譜 61 4.5.3 Ca0.96Dy0.02Na0.02Nb2O6螢光光譜 63 4.6光譜壽命分析 66 4.6.1 Ca0.96Dy0.02Na0.02WO4光譜壽命 66 4.6.2 Ba0.96Dy0.02Na0.02WO4光譜壽命 68 4.6.3 Ca0.96Dy0.02Na0.02Nb2O6 69 4.7 CIE色度座標 70 4.7.1 Ca0.96Dy0.02Na0.02WO4 CIE色度座標 70 4.7.2 Ba0.96Dy0.02Na0.02WO4 CIE色度座標 70 4.7.3 Ca0.96Dy0.02Na0.02Nb2O6 CIE色度座標 71 4.8 Ca0.96Pr0.02Na0.02WO4 73 4.8.1 Ca0.96Pr0.02Na0.02WO4 XRD圖 73 4.8.2 Ca0.96Pr0.02Na0.02WO4 螢光光譜 74 4.8.3 Ca0.96Na0.02Pr0.02WO4 CIE色度圖 76 4.9 Ba0.96Pr0.02Na0.02WO4 77 4.9.1 Ba0.96Pr0.02Na0.02WO4 XRD圖 77 4.9.2 Ba0.96Pr0.02Na0.02WO4 螢光光譜 78 4.9.3 Ba0.96Pr0.02Na0.02WO4 CIE色度圖 80 第五章 結論 81 參考文獻 83

    王書任, 林仁鈞., 讓LED發光的功臣—螢光粉. 科學發展, 2009. 435期.
    2. 楊素華, 螢光粉在發光上的應用. 科學發展, 2002. 358期.
    3. 劉如熹, 白光發光二極體製作技術. 全華科技圖書股份有限公司, 2001.
    4. 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹. 全華科技圖書股份有限公司, 2003.
    5. Sharma, K.G. and N.R. Singh, Synthesis of CaWO4:Eu3+ phosphor powders via ethylene glycol route and its optical properties. Journal of Rare Earths, 2012. 30(4): p. 310-314.
    6. Grasser, R., A. Scharmann, and K.R. Strack, On the intrinsic nature of the blue luminescence in CaWO4. Journal of Luminescence, 1982. 27(3): p. 263-272.
    7. Grasser, R. and A. Scharmann, Luminescent sites in CaWO4 and CaWO4 : Pb crystals. Journal of Luminescence, 1976. 12–13(0): p. 473-478.
    8. Peterson, R.G. and R.C. Powell, Energy transfer in rare earth-doped CaWO4 after red edge excitation. Journal of Luminescence, 1978. 16(3): p. 285-296.
    9. Gurvich, A.M., et al., On the nature of optically active centres in selfactivated luminophors of the CaWO4 type. Journal of Luminescence, 1977. 15(2): p. 187-199.
    10. Urland, W., The assessment of the crystal field parameters for fn-electron systems by the angular overlap model. Rare-earth ions in CaWO4. Chemical Physics, 1979. 38(3): p. 407-412.
    11. Desgreniers, S., S. Jandl, and C. Carlone, Temperature dependence of the Raman active phonons in CaWO4, SrWO4 and BaWO4. Journal of Physics and Chemistry of Solids, 1984. 45(11–12): p. 1105-1109.
    12. Emmenegger, F., Preparation of single crystals of CaNb2O6 by chemical transport. Journal of Crystal Growth, 1968. 2(2): p. 109-110.
    13. Di, J., et al., Crystal growth and optical properties of Sm:CaNb2O6 single crystal. Journal of Alloys and Compounds, (0).
    14. Istomin, S.Y., et al., Perovskite-Type Ca1−xSrxNbO3(0≤x≤1) Phases: A Synthesis, Structure, and Electron Microscopy Study. Journal of Solid State Chemistry, 1998. 141(2): p. 514-521.
    15. Hervieu, M., F. Studer, and B. Raveau, Oxydes de type perovskite du systeme CaNbO. Journal of Solid State Chemistry, 1977. 22(3): p. 273-289.
    16. Long, X. and X. Han, Spectral properties of Nd3+:Ca2Nb2O7 crystal. Journal of Luminescence, 2006. 118(1): p. 79-82.
    17. Fu, L.-M., et al., La0.90Dy0.05Nb2O7 nanosheet phosphor and its multilayer films with enhanced host excitation-mediated photoluminescence. Journal of Alloys and Compounds, 2012. 525(0): p. 14-21.
    18. Wu, G.S., et al., Synthesis and photoluminescence of Dy-doped ZnO nanowires. Physica E: Low-dimensional Systems and Nanostructures, 2006. 31(1): p. 5-8.
    19. Borja-Urby, R., et al., Strong broad green UV-excited photoluminescence in rare earth (RE=Ce, Eu, Dy, Er, Yb) doped barium zirconate. Materials Science and Engineering: B, 2011. 176(17): p. 1388-1392.
    20. Li, X., et al., Preparation and photoluminescence characteristics of Tb-, Sm- and Dy-doped Y2O3 nanofibers by electrospinning. Journal of Luminescence, 2012. 132(1): p. 81-85.
    21. Goto, K., Y. Nakachi, and K. Ueda, Photoluminescence properties of Pr doped and Tb–Mg codoped CaSnO3 with perovskite structure. Thin Solid Films, 2008. 516(17): p. 5885-5889.
    22. Zhu, F., et al., Photoluminescence and radiation effect of Er and Pr implanted silicon-rich silicon oxide thin films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009. 267(18): p. 3100-3103.
    23. Mohitkar, S.A., G. Kalpana, and K. Vidyasagar, Syntheses, structure and rare earth metal photoluminescence of new and known isostructural A2Mo4Sb2O18 (A=Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds. Journal of Solid State Chemistry, 2011. 184(4): p. 735-740.
    24. Nakajima, H., et al., Photoluminescence properties of trace amounts of Pr and Tb in yttria-stabilized zirconia. Solid State Communications, 2004. 129(7): p. 421-424.
    25. Nagpure, I.M., S. Saha, and S.J. Dhoble, Photoluminescence and thermoluminescence characterization of Eu3+- and Dy3+ -activated Ca3(PO4)2 phosphor. Journal of Luminescence, 2009. 129(9): p. 898-905.
    26. Sainova, D., et al., Thermoluminescence and electroluminescence of annealed polyfluorene layers. Chemical Physics Letters, 2003. 371(1–2): p. 15-22.
    27. Demas, J.N. and S.E. Demas, Luminescence, in Encyclopedia of Physical Science and Technology (Third Edition), A.M. Editor-in-Chief: Robert, Editor. 2003, Academic Press: New York. p. 799-823.
    28. Gürel, H.H., Ö. Akinci, and H. Ünlü, Tight binding modeling of CdSe/ZnS and CdZnS/CdS II–VI heterostructures for solar cells: Role of d-orbitals. Thin Solid Films, 2008. 516(20): p. 7098-7104.
    29. Yamamoto, W.M.Y.S.S.-k.H., Fundamentals of Phosphors. 2006. CRC Press - 352 Pages
    30. Yang, J.E., The Application and Investigation of Luminescence Materials in Electronic Industry. Technical Report of ITRI, 1992.
    31. Ropp, R., Luminescence and the Solid State. Warren, New Jersey, USA, 2004.
    32. Jose Solé, L.B., Daniel Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids. Wiley-Interscience, 2010.
    33. Peacock, R.D., The intensities of laporte forbidden transitions of the d- and f-block transition metal ions. Journal of Molecular Structure, 1978. 46(0): p. 203-227.
    34. Smith, W.L., The Franck–Condon principle and the sudden approximation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(1): p. 222-227.
    35. Chuang, Y.-m., 鉬酸鹽類及奈米級鈮酸鍶鋇粉體之合成及光學特性探討. 國立成功大學電機工程研究所碩士論文, 2008. 台灣.

    無法下載圖示 校內:2017-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE