簡易檢索 / 詳目顯示

研究生: 廖國綸
Liao, Kuo-Lun
論文名稱: 以水熱法成長銳鈦礦二氧化鈦結構於光電化學分解水之應用
Hydrothermal growth of anatase TiO2 structures for use in photoelectrochemical water oxidation
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 二氧化鈦銳鈦礦水熱法光陽極光電化學分解水
外文關鍵詞: TiO2, anatase, hydrothermal growth, photoanode, photoelectrochemical water oxidation
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水熱法製備銳鈦礦二氧化鈦沉積物於FTO上,並將其應用於光電化學水分解。藉由沉積參數如晶種層溫度、水熱法成長時間、前驅物濃度、水熱法成長溫度、食鹽水溶液等的調整,改變銳鈦礦二氧化鈦沉積物的形貌,並優化銳鈦礦二氧化鈦光電極的光電化學水分解效率。銳鈦礦二氧化鈦光電極在1.23 V vs RHE時,電流可達到0.279 mA/cm2。而在穩定度測試中,此銳鈦礦二氧化鈦光電極的光電流密度,在操作600秒後僅下降8%。

    In this work, anatase titanium dioxide (TiO2) structures have been deposited on fluorine-doped tin oxide (FTO) by hydrothermal method for the application to photoelectrochemical water splitting. The performance of anatase TiO2 photoanode was optimized in terms of deposition conditions, including annealing temperature of seed layer, period of hydrothermal growth, concentration of titanium(IV) n-butoxide, temperature of hydrothermal growth and saturated sodium chloride solution. The optimized anatase TiO2 photoanode produces a photocurrent density of 0.279 mA/cm2 at a potential of 1.23 V versus RHE under illumination of AM 1.5G (100 mWcm-2). The photocurrent density of the anatase TiO2 photoanode over a period of 600s is reduced only 8%.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1前言 1 1-2 Honda-Fujishima Effect 3 1-3研究動機 5 第二章 文獻回顧 6 2-1太陽光光譜輻照度 6 2-2光觸媒原理 7 2-2-1光觸媒分解水的原理 7 2-2-2光觸媒分解水的反應步驟 10 2-2-3光觸媒分解水裝置 12 2-3光電化學法作用原理 16 2-3-1光電化學法裝置介紹 16 2-3-1-1光電極與導電基板之探討 18 2-3-1-2對電極 18 2-3-1-3參考電極 18 2-3-1-4電解質 19 2-3-2 n-type半導體光電化學法作用原理 19 2-4二氧化鈦的結構與性質 21 2-4-1二氧化鈦之結晶結構 21 2-4-2一維奈米結構金紅石二氧化鈦之水分解應用 22 2-4-3二氧化鈦金紅石與銳鈦礦之比較 26 2-4-4銳鈦礦二氧化鈦的結構型態 26 2-4-5銳鈦礦二氧化鈦的合成方式 28 2-4-5-1水熱法 28 2-4-5-2電化學法 29 2-4-5-3氣相沉積法 30 第三章 實驗步驟與研究方法 31 3-1實驗材料 31 3-1-1成長二氧化鈦銳鈦礦材料 31 3-1-2光電化學分解水之電解質材料 31 3-2實驗製程設備 32 3-2-1旋轉塗佈機 32 3-2-2高壓釜 32 3-2-3高溫爐 32 3-3實驗流程設計 33 3-4實驗步驟 34 3-4-1 FTO導電玻璃基版清潔 34 3-4-2晶種層的製備 34 3-4-3水熱法成長二氧化鈦沉積物 35 3-4-4光電極製作與光電化學水分解量測 36 3-5分析與鑑定 37 3-5-1掃描式電子顯微鏡(SEM) 37 3-5-2 X光繞射分析(XRD) 38 3-5-3拉曼分析儀(Raman Spectroscopy) 39 3-5-4紫外光-可見光吸收光譜儀(UV-vis Spectroscopy) 40 3-5-5 太陽光模擬器(Solar Simulator) 41 3-5-6 恆電位儀(Potentiostat) 41 第四章 結果與討論 42 4-1晶種層退火溫度 42 4-1-1晶種層退火溫度對二氧化鈦沉積物形貌之影響 43 4-1-2晶種層退火溫度對二氧化鈦沉積物吸收度之影響 43 4-1-3晶種層退火溫度對二氧化鈦沉積物相態之影響 45 4-1-4晶種層退火溫度對二氧化鈦沉積物光電化學水分解 之影響 48 4-2水熱法成長時間 50 4-2-1水熱法成長時間對二氧化鈦沉積物形貌之影響 50 4-2-2水熱法成長時間對二氧化鈦沉積物吸收度之影響 52 4-2-3水熱法成長時間對二氧化鈦沉積物相態之影響 52 4-2-4水熱法成長時間對二氧化鈦沉積物光電化學水分解 之影響 54 4-3前驅物濃度 55 4-3-1前驅物濃度對二氧化鈦沉積物形貌之影響 55 4-3-2前驅物濃度對二氧化鈦沉積物吸收度之影響 57 4-3-3前驅物濃度對二氧化鈦沉積物相態之影響 57 4-3-4前驅物濃度對二氧化鈦沉積物光電化學水分解之影響 59 4-4水熱法成長溫度 61 4-4-1水熱法成長溫度對二氧化鈦沉積物形貌之影響 61 4-4-2水熱法成長溫度對二氧化鈦沉積物吸收度之影響 63 4-4-3水熱法成長溫度對二氧化鈦沉積物相態之影響 63 4-4-4水熱法成長溫度對二氧化鈦沉積物光電化學水分解 之影響 65 4-5飽和食鹽水溶液 66 4-5-1飽和食鹽水溶液對二氧化鈦沉積物形貌之影響 66 4-5-2飽和食鹽水溶液對二氧化鈦沉積物相態之影響 67 4-5-3飽和食鹽水溶液對二氧化鈦沉積物光電化學水分解 之影響 69 4-6不同條件製備光陽極之光電化學水分解效果與 沉積純銳鈦礦條件 70 4-7穩定性測試 72 第五章 總結論 73 第六章 參考文獻 75

    [1] Q. Huang, Z. Ye, and X. Xiao, "Recent progress in photocathodes for hydrogen evolution", Journal of Materials Chemistry A, 3, 15824-15837 (2015).
    [2] B. D. Sherman, M. D. Vaughn, J. J. Bergkamp, D. Gust, A. L. Moore, and T. A. Moore, "Evolution of reaction center mimics to systems capable of generating solar fuel", Photosynthesis Research, 120, 59-70 (2014).
    [3] Y. Tachibana, L. Vayssieres, and J. R. Durrant, "Artificial photosynthesis for solar water-splitting", Nat Photon, 6, 511-518 (2012).
    [4] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, 37-38 (1972).
    [5] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
    [6] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting", Chemical Society Reviews, 38, 253-278 (2009).
    [7] J.-S. Yang, W.-P. Liao, and J.-J. Wu, "Morphology and Interfacial Energetics Controls for Hierarchical Anatase/Rutile TiO2 Nanostructured Array for Efficient Photoelectrochemical Water Splitting", ACS Applied Materials & Interfaces, 5, 7425-7431 (2013).
    [8] J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, et al., "TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment", ACS Central Science, 2, 80-88 (2016).
    [9] X.-L. Zheng, C.-T. Dinh, F. P. G. de Arquer, B. Zhang, M. Liu, O. Voznyy, et al., "ZnFe2O4 Leaves Grown on TiO2 Trees Enhance Photoelectrochemical Water Splitting", Small, 12, 3181-3188 (2016).
    [10] R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, and B. Zhou, "BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications", Nano-Micro Letters, 9, 14 (2016).
    [11] B.-Y. Cheng, J.-S. Yang, H.-W. Cho, and J.-J. Wu, "Fabrication of an Efficient BiVO4–TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation", ACS Applied Materials & Interfaces, 8, 20032-20039 (2016).
    [12] M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, "Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis", Energy & Environmental Science, 7, 2182-2202 (2014).
    [13] http://rredc.nrel.gov/solar/spectra/am1.5/.
    [14] D. R. Myers, K. Emery, and C. Gueymard, "Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation", Journal of Solar Energy Engineering, 126, 567-574 (2004).
    [15] "American Society for Testing Materials, Standard for Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables, Standard ASTM E490-00a, West Conshocken, PA (2006)".
    [16] T. Smith, "Studies of p-type semiconductor photoelectrodes for tandem solar cells".
    [17] A. Kudo, "Photocatalyst Materials for Water Splitting", Catalysis Surveys from Asia, 7, 31-38 (2003).
    [18] R. Abe, "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11, 179-209 (2010).
    [19] P. S. Kumar, J. Sundaramurthy, S. Sundarrajan, V. J. Babu, G. Singh, S. I. Allakhverdiev, et al., "Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation", Energy & Environmental Science, 7, 3192-3222 (2014).
    [20] K. Maeda and K. Domen, "New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light", The Journal of Physical Chemistry C, 111, 7851-7861 (2007).
    [21] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, "Visible-light driven heterojunction photocatalysts for water splitting - a critical review", Energy & Environmental Science, 8, 731-759 (2015).
    [22] Y. Park, K. J. McDonald, and K.-S. Choi, "Progress in bismuth vanadate photoanodes for use in solar water oxidation", Chemical Society Reviews, 42, 2321-2337 (2013).
    [23] J. Li and N. Wu, "Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review", Catalysis Science & Technology, 5, 1360-1384 (2015).
    [24] X. Shi, L. Cai, M. Ma, X. Zheng, and J. H. Park, "General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting", ChemSusChem, 8, 3192-3203 (2015).
    [25] M. S. Prévot and K. Sivula, "Photoelectrochemical Tandem Cells for Solar Water Splitting", The Journal of Physical Chemistry C, 117, 17879-17893 (2013).
    [26] Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, "Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook", Energy & Environmental Science, 6, 347-370 (2013).
    [27] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, et al., "Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols", Journal of Materials Research, 25, 3-16 (2010).
    [28] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions", International Journal of Hydrogen Energy, 27, 19-26 (2002).
    [29] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications: Wiley, 2000.
    [30] L. J. Minggu, W. R. Wan Daud, and M. B. Kassim, "An overview of photocells and photoreactors for photoelectrochemical water splitting", International Journal of Hydrogen Energy, 35, 5233-5244 (2010).
    [31] A. J. Nozik, "p‐n photoelectrolysis cells", Applied Physics Letters, 29, 150-153 (1976).
    [32] S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, "Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water", Journal of the American Chemical Society, 132, 17343-17345 (2010).
    [33] P. Bornoz, F. F. Abdi, S. D. Tilley, B. Dam, R. van de Krol, M. Graetzel, et al., "A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting", The Journal of Physical Chemistry C, 118, 16959-16966 (2014).
    [34] Gurudayal, D. Sabba, M. H. Kumar, L. H. Wong, J. Barber, M. Grätzel, et al., "Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting", Nano Letters, 15, 3833-3839 (2015).
    [35] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, et al., "Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation", Nano Letters, 14, 1099-1105 (2014).
    [36] A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, "Highly active oxide photocathode for photoelectrochemical water reduction", Nat Mater, 10, 456-461 (2011).
    [37] Z. Chen, T. G. Deutsch, H. N. Dinh, K. Domen, K. Emery, A. J. Forman, et al., "Experimental Considerations," in Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, ed New York, NY: Springer New York, 2013, pp. 17-44.
    [38] A. J. Nozik and R. Memming, "Physical Chemistry of Semiconductor−Liquid Interfaces", The Journal of Physical Chemistry, 100, 13061-13078 (1996).
    [39] H. Kazuhito, I. Hiroshi, and F. Akira, "TiO2 Photocatalysis: A Historical Overview and Future Prospects", Japanese Journal of Applied Physics, 44, 8269 (2005).
    [40] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells", Inorganic Chemistry, 44, 6841-6851 (2005).
    [41] A. Fujishima, X. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena", Surface Science Reports, 63, 515-582 (2008).
    [42] A. Mills, J. Wang, and M. Crow, "Photocatalytic oxidation of soot by P25 TiO2 films", Chemosphere, 64, 1032-1035 (2006).
    [43] H. Wang, D. Ma, X. Huang, Y. Huang, and X. Zhang, "General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance", Scientific Reports, 2, 701 (2012).
    [44] R. S. Pessoa, M. A. Fraga, L. V. Santos, M. Massi, and H. S. Maciel, "Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: A review of the material characteristics, synthesis and recent applications", Materials Science in Semiconductor Processing, 29, 56-68 (2015).
    [45] D. A. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation", Journal of Materials Science, 46, 855-874 (2011).
    [46] S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, "Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis", Angewandte Chemie International Edition, 49, 6405-6408 (2010).
    [47] M. Gao, L. Zhu, W. L. Ong, J. Wang, and G. W. Ho, "Structural design of TiO2-based photocatalyst for H2 production and degradation applications", Catalysis Science & Technology, 5, 4703-4726 (2015).
    [48] H. Chen and S. Yang, "Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems", Nanoscale Horizons, 1, 96-108 (2016).
    [49] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, et al., "Solar Water Splitting Cells", Chemical Reviews, 110, 6446-6473 (2010).
    [50] R. Zeng, K. Li, X. Sheng, L. Chen, H. Zhang, and X. Feng, "A room temperature approach for the fabrication of aligned TiO2 nanotube arrays on transparent conductive substrates", Chemical Communications, 52, 4045-4048 (2016).
    [51] J. Jiao, J. Tang, W. Gao, D. Kuang, Y. Tong, and L. Chen, "Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity", Journal of Power Sources, 274, 464-470 (2015).
    [52] I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, et al., "Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production", Nano Letters, 11, 4978-4984 (2011).
    [53] W.-Q. Wu, Y.-F. Xu, H.-S. Rao, C.-Y. Su, and D.-B. Kuang, "Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells", Journal of the American Chemical Society, 136, 6437-6445 (2014).
    [54] S. J. A. Moniz, J. Zhu, and J. Tang, "1D Co-Pi Modified BiVO4/ZnO Junction Cascade for Efficient Photoelectrochemical Water Cleavage", Advanced Energy Materials, 4, 1301590-n/a (2014).
    [55] L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, et al., "High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes", Nano Letters, 16, 3463-3474 (2016).
    [56] N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", The Journal of Physical Chemistry B, 104, 8989-8994 (2000).
    [57] M. Lazzeri, A. Vittadini, and A. Selloni, "Structure and energetics of stoichiometric TiO2 anatase surfaces", Physical Review B, 63, 155409 (2001).
    [58] G. Odling and N. Robertson, "Why is Anatase a Better Photocatalyst than Rutile? The Importance of Free Hydroxyl Radicals", ChemSusChem, 8, 1838-1840 (2015).
    [59] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, "Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films", Scientific Reports, 4, 4043 (2014).
    [60] D. Fang, Z. Luo, K. Huang, and D. C. Lagoudas, "Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane", Applied Surface Science, 257, 6451-6461 (2011).
    [61] L. Ma and S. X. Tu, "Removal of arsenic from aqueous solution by two types of nano TiO2 crystals", Environmental Chemistry Letters, 9, 465-472 (2011).
    [62] B. Liu, A. Khare, and E. S. Aydil, "Synthesis of single-crystalline anatase nanorods and nanoflakes on transparent conducting substrates", Chemical Communications, 48, 8565-8567 (2012).
    [63] M. Takahashi, K. Tsukigi, T. Uchino, and T. Yoko, "Enhanced photocurrent in thin film TiO2 electrodes prepared by sol–gel method", Thin Solid Films, 388, 231-236 (2001).
    [64] P. Salvador, "Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis", Journal of Applied Physics, 55, 2977-2985 (1984).
    [65] A. Yamakata, T.-a. Ishibashi, and H. Onishi, "Time-resolved infrared absorption study of nine TiO2 photocatalysts", Chemical Physics, 339, 133-137 (2007).
    [66] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, "Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase", Journal of the American Chemical Society, 118, 6716-6723 (1996).
    [67] N. Murakami, Y. Kurihara, T. Tsubota, and T. Ohno, "Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol", The Journal of Physical Chemistry C, 113, 3062-3069 (2009).
    [68] T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero, et al., "Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity", Journal of the American Chemical Society, 134, 6751-6761 (2012).
    [69] H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako, et al., "Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution", Chemistry of Materials, 25, 405-411 (2013).
    [70] W. Chen, Q. Kuang, Q. Wang, and Z. Xie, "Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications", RSC Advances, 5, 20396-20409 (2015).
    [71] W.-Q. Wu, B.-X. Lei, H.-S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su, et al., "Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells", Scientific Reports, 3, 1352 (2013).
    [72] W.-Q. Wu, H.-S. Rao, H.-L. Feng, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, "A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion", Nano Energy, 9, 15-24 (2014).
    [73] R. L. Penn and J. F. Banfield, "Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2", American Mineralogist, 83, 1077-1082 (1998).
    [74] J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, "Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells", Energy & Environmental Science, 5, 5750-5757 (2012).
    [75] H. Miao, X. Hu, J. Fan, C. Li, Q. Sun, Y. Hao, et al., "Hydrothermal synthesis of TiO2 nanostructure films and their photoelectrochemical properties", Applied Surface Science, 358, Part A, 418-424 (2015).
    [76] H. S. Chung, G. S. Han, S. Y. Park, H.-W. Shin, T. K. Ahn, S. Jeong, et al., "Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells", ACS Applied Materials & Interfaces, 7, 10324-10330 (2015).
    [77] D.-D. Qin, Y.-P. Bi, X.-J. Feng, W. Wang, G. D. Barber, T. Wang, et al., "Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes", Chemistry of Materials, 27, 4180-4183 (2015).
    [78] G. S. Han, S. Lee, E. S. Yu, S. P. Park, I. S. Cho, and H. S. Jung, "Epitaxial Anatase TiO2 Nanorods Array with Reduced Interfacial Charge Recombination for Solar Water Splitting", Journal of the Electrochemical Society, 163, H469-H473 (2016).
    [79] J.-J. Wu and C.-C. Yu, "Aligned TiO2 Nanorods and Nanowalls", The Journal of Physical Chemistry B, 108, 3377-3379 (2004).
    [80] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays", Small, 5, 104-111 (2009).
    [81] 汪建民, 材料分析: 中國材料科學學會.
    [82] J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, "UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk", The Journal of Physical Chemistry B, 110, 927-935 (2006).
    [83] https://en.wikipedia.org/wiki/Raman_scattering.
    [84] J.-Y. Liao, B.-X. Lei, Y.-F. Wang, J.-M. Liu, C.-Y. Su, and D.-B. Kuang, "Hydrothermal Fabrication of Quasi-One-Dimensional Single-Crystalline Anatase TiO2 Nanostructures on FTO Glass and Their Applications in Dye-Sensitized Solar Cells", Chemistry-a European Journal, 17, 1352-1357 (2011).
    [85] N. P. Dasgupta and P. Yang, "Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion", Frontiers of Physics, 9, 289-302 (2014).
    [86] B. Liu and E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells", Journal of the American Chemical Society, 131, 3985-3990 (2009).
    [87] J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, et al., "Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting", Applied Catalysis B: Environmental, 158–159, 296-300 (2014).
    [88] J.-K. Oh, J.-K. Lee, H.-S. Kim, S.-B. Han, and K.-W. Park, "TiO2 Branched Nanostructure Electrodes Synthesized by Seeding Method for Dye-Sensitized Solar Cells", Chemistry of Materials, 22, 1114-1118 (2010).
    [89] L. Yan, W. Zhao, and Z. Liu, "1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting", Dalton Transactions, 45, 11346-11352 (2016).

    無法下載圖示 校內:2022-02-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE